Previously, this only applied when using `-fincremental --watch`, but
`--webui` makes the build runner stay alive just like `--watch` does, so
the same logic applies here. Without this, attempting to perform
incremental updates with `--webui` performs full rebuilds. (I did test
that before merging the PR, but at that time I was passing `--watch`
too -- which has since been disallowed -- so I missed that it doesn't
work as expected without that option!)
This commit replaces the "fuzzer" UI, previously accessed with the
`--fuzz` and `--port` flags, with a more interesting web UI which allows
more interactions with the Zig build system. Most notably, it allows
accessing the data emitted by a new "time report" system, which allows
users to see which parts of Zig programs take the longest to compile.
The option to expose the web UI is `--webui`. By default, it will listen
on `[::1]` on a random port, but any IPv6 or IPv4 address can be
specified with e.g. `--webui=[::1]:8000` or `--webui=127.0.0.1:8000`.
The options `--fuzz` and `--time-report` both imply `--webui` if not
given. Currently, `--webui` is incompatible with `--watch`; specifying
both will cause `zig build` to exit with a fatal error.
When the web UI is enabled, the build runner spawns the web server as
soon as the configure phase completes. The frontend code consists of one
HTML file, one JavaScript file, two CSS files, and a few Zig source
files which are built into a WASM blob on-demand -- this is all very
similar to the old fuzzer UI. Also inherited from the fuzzer UI is that
the build system communicates with web clients over a WebSocket
connection.
When the build finishes, if `--webui` was passed (i.e. if the web server
is running), the build runner does not terminate; it continues running
to serve web requests, allowing interactive control of the build system.
In the web interface is an overall "status" indicating whether a build
is currently running, and also a list of all steps in this build. There
are visual indicators (colors and spinners) for in-progress, succeeded,
and failed steps. There is a "Rebuild" button which will cause the build
system to reset the state of every step (note that this does not affect
caching) and evaluate the step graph again.
If `--time-report` is passed to `zig build`, a new section of the
interface becomes visible, which associates every build step with a
"time report". For most steps, this is just a simple "time taken" value.
However, for `Compile` steps, the compiler communicates with the build
system to provide it with much more interesting information: time taken
for various pipeline phases, with a per-declaration and per-file
breakdown, sorted by slowest declarations/files first. This feature is
still in its early stages: the data can be a little tricky to
understand, and there is no way to, for instance, sort by different
properties, or filter to certain files. However, it has already given us
some interesting statistics, and can be useful for spotting, for
instance, particularly complex and slow compile-time logic.
Additionally, if a compilation uses LLVM, its time report includes the
"LLVM pass timing" information, which was previously accessible with the
(now removed) `-ftime-report` compiler flag.
To make time reports more useful, ZIR and compilation caches are ignored
by the Zig compiler when they are enabled -- in other words, `Compile`
steps *always* run, even if their result should be cached. This means
that the flag can be used to analyze a project's compile time without
having to repeatedly clear cache directory, for instance. However, when
using `-fincremental`, updates other than the first will only show you
the statistics for what changed on that particular update. Notably, this
gives us a fairly nice way to see exactly which declarations were
re-analyzed by an incremental update.
If `--fuzz` is passed to `zig build`, another section of the web
interface becomes visible, this time exposing the fuzzer. This is quite
similar to the fuzzer UI this commit replaces, with only a few cosmetic
tweaks. The interface is closer than before to supporting multiple fuzz
steps at a time (in line with the overall strategy for this build UI,
the goal will be for all of the fuzz steps to be accessible in the same
interface), but still doesn't actually support it. The fuzzer UI looks
quite different under the hood: as a result, various bugs are fixed,
although other bugs remain. For instance, viewing the source code of any
file other than the root of the main module is completely broken (as on
master) due to some bogus file-to-module assignment logic in the fuzzer
UI.
Implementation notes:
* The `lib/build-web/` directory holds the client side of the web UI.
* The general server logic is in `std.Build.WebServer`.
* Fuzzing-specific logic is in `std.Build.Fuzz`.
* `std.Build.abi` is the new home of `std.Build.Fuzz.abi`, since it now
relates to the build system web UI in general.
* The build runner now has an **actual** general-purpose allocator,
because thanks to `--watch` and `--webui`, the process can be
arbitrarily long-lived. The gpa is `std.heap.DebugAllocator`, but the
arena remains backed by `std.heap.page_allocator` for efficiency. I
fixed several crashes caused by conflation of `gpa` and `arena` in the
build runner and `std.Build`, but there may still be some I have
missed.
* The I/O logic in `std.Build.WebServer` is pretty gnarly; there are a
*lot* of threads involved. I anticipate this situation improving
significantly once the `std.Io` interface (with concurrency support)
is introduced.
Not only are `Step.Compile` methods like `linkLibC()` redundant because
`Module` exposes the same APIs, it also might not be immediately obvious
to users that these methods modify the underlying root module, which can
be a footgun and lead to unintended results if the module is exported to
package consumers or shared by multiple compile steps.
Using `compile.root_module.link_libc = true` makes it more clear to
users which of the compile step and the module owns which options.
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
preparing to rearrange std.io namespace into an interface
how to upgrade:
std.io.getStdIn() -> std.fs.File.stdin()
std.io.getStdOut() -> std.fs.File.stdout()
std.io.getStdErr() -> std.fs.File.stderr()
e.g. `x86_64-windows.win10...win11_dt-gnu` -> `x86_64-windows-gnu`
When the OS version is the default this is redundant with checking the
default in the standard library.
Previously, various doc comments heavily disagreed with the
implementation on both what lives where on the filesystem at what time,
and how that was represented in code. Notably, the combination of emit
paths outside the cache and `disable_lld_caching` created a kind of
ad-hoc "cache disable" mechanism -- which didn't actually *work* very
well, 'most everything still ended up in this cache. There was also a
long-standing issue where building using the LLVM backend would put a
random object file in your cwd.
This commit reworks how emit paths are specified in
`Compilation.CreateOptions`, how they are represented internally, and
how the cache usage is specified.
There are now 3 options for `Compilation.CacheMode`:
* `.none`: do not use the cache. The paths we have to emit to are
relative to the compiler cwd (they're either user-specified, or
defaults inferred from the root name). If we create any temporary
files (e.g. the ZCU object when using the LLVM backend) they are
emitted to a directory in `local_cache/tmp/`, which is deleted once
the update finishes.
* `.whole`: cache the compilation based on all inputs, including file
contents. All emit paths are computed by the compiler (and will be
stored as relative to the local cache directory); it is a CLI error to
specify an explicit emit path. Artifacts (including temporary files)
are written to a directory under `local_cache/tmp/`, which is later
renamed to an appropriate `local_cache/o/`. The caller (who is using
`--listen`; e.g. the build system) learns the name of this directory,
and can get the artifacts from it.
* `.incremental`: similar to `.whole`, but Zig source file contents, and
anything else which incremental compilation can handle changes for, is
not included in the cache manifest. We don't need to do the dance
where the output directory is initially in `tmp/`, because our digest
is computed entirely from CLI inputs.
To be clear, the difference between `CacheMode.whole` and
`CacheMode.incremental` is unchanged. `CacheMode.none` is new
(previously it was sort of poorly imitated with `CacheMode.whole`). The
defined behavior for temporary/intermediate files is new.
`.none` is used for direct CLI invocations like `zig build-exe foo.zig`.
The other cache modes are reserved for `--listen`, and the cache mode in
use is currently just based on the presence of the `-fincremental` flag.
There are two cases in which `CacheMode.whole` is used despite there
being no `--listen` flag: `zig test` and `zig run`. Unless an explicit
`-femit-bin=xxx` argument is passed on the CLI, these subcommands will
use `CacheMode.whole`, so that they can put the output somewhere without
polluting the cwd (plus, caching is potentially more useful for direct
usage of these subcommands).
Users of `--listen` (such as the build system) can now use
`std.zig.EmitArtifact.cacheName` to find out what an output will be
named. This avoids having to synchronize logic between the compiler and
all users of `--listen`.
In a compiler built with debug extensions, pass `--debug-incremental` to
spawn the "incremental debug server". This is a TCP server exposing a
REPL which allows querying a bunch of compiler state, some of which is
stored only when that flag is passed. Eventually, this will probably
move into `std.zig.Server`/`std.zig.Client`, but this is easier to work
with right now. The easiest way to interact with the server is `telnet`.
This is fairly straightforward; the actual compiler changes are limited
to the CLI, since `Compilation` already supports this combination.
A new `std.Build` API is introduced to allow representing this. By
passing the `emit_object` option to `std.Build.addTest`, you get a
`Step.Compile` which emits an object file; you can then use that as you
would any other object, such as either installing it for external use,
or linking it into another step.
A standalone test is added to cover the build system API. It builds a
test into an object, and links it into a final executable, which it then
runs.
Using this build system mechanism prevents the build system from
noticing that you're running a `zig test`, so the build runner and test
runner do not communicate over stdio. However, that's okay, because the
real-world use cases for this feature don't want to do that anyway!
Resolves: #23374
This can also be extended to ELF later as it means roughly the same thing there.
This addresses the main issue in #21721 but as I don't have a macOS machine to
do further testing on, I can't confirm whether zig cc is able to pass the entire
cgo test suite after this commit. It can, however, cross-compile a basic program
that uses cgo to x86_64-macos-none which previously failed due to lack of -x
support. Unlike previously, the resulting symbol table does not contain local
symbols (such as C static functions).
I believe this satisfies the related donor bounty: https://ziglang.org/news/second-donor-bounty
Functions like isMinGW() and isGnuLibC() have a good reason to exist: They look
at multiple components of the target. But functions like isWasm(), isDarwin(),
isGnu(), etc only exist to save 4-8 characters. I don't think this is a good
enough reason to keep them, especially given that:
* It's not immediately obvious to a reader whether target.isDarwin() means the
same thing as target.os.tag.isDarwin() precisely because isMinGW() and similar
functions *do* look at multiple components.
* It's not clear where we would draw the line. The logical conclusion before
this commit would be to also wrap Arch.isX86(), Os.Tag.isSolarish(),
Abi.isOpenHarmony(), etc... this obviously quickly gets out of hand.
* It's nice to just have a single correct way of doing something.
The previous logic here was trying to assume that custom test runners
never used `std.zig.Server` to communicate with the build runner;
however, it was flawed, because modifying the `test_runner` field on
`Step.Compile` would not update this flag. That might have been
intentional (allowing a way for the user to specify a custom test runner
which *does* use the compiler server protocol), but if so, it was a
flawed API, since it was too easy to update one field without updating
the other.
Instead, bundle these two pieces of state into a new type
`std.Build.Step.Compile.TestRunner`. When passing a custom test runner,
you are now *provided* to specify whether it is a "simple" runner, or
whether it uses the compiler server protocol.
This is a breaking change, but is unlikely to affect many people, since
custom test runners are seldom used in the wild.
At the expense of a slight special case in the build runner, we can make
the handling of dependencies between modules a little shorter and much
easier to follow.
When module and step graphs are being constructed during the "configure"
phase, we do not set up step dependencies triggered by modules. Instead,
after the configure phase, the build runner traverses the whole
step/module graph, starting from the root top-level steps, and
configures all step dependencies implied by modules. The "make" phase
then proceeds as normal. Also, the old `Module.dependencyIterator` logic
is replaced by two separate iterables. `Module.getGraph` takes the root
module of a compilation, and returns all modules in its graph; while
`Step.Compile.getCompileDependencies` takes a `*Step.Compile` and
returns all `*Step.Compile` it depends on, recursively, possibly
excluding dynamic libraries. The old `Module.dependencyIterator`
combined these two functions into one unintuitive iterator; they are now
separated, which in particular helps readability at the usage sites
which only need one or the other.
This commit changes the `root_module` field of `std.Build.Step.Compile`
to be a `*Module` rather than a `Module`. This is a breaking change, but
an incredibly minor one (the full potential extent of the breakage can
be seen in the modified standalone test).
This change will be necessary for an upcoming improvement, so it was
convenient to make it here.
The compiler defaults this value to off so that users whose system
shared libraries are all ELF files don't have to pay the cost of
checking every file to find out if it is a text file instead.
When a GNU ld script is encountered, the error message instructs users
about the CLI flag that will immediately solve their problem.
These are really answering questions about the Zig compiler's capacity to
provide a libc/libc++ implementation. As such, std.zig.target seems like a more
fitting place for these.
A compilation build step for which the binary is not required could not
be compiled previously. There were 2 issues that caused this:
- The compiler communicated only the results of the emitted binary and
did not properly communicate the result if the binary was not emitted.
This is fixed by communicating the final hash of the artifact path (the
hash of the corresponding /o/<hash> directory) and communicating this
instead of the entire path. This changes the zig build --listen protocol
to communicate hashes instead of paths, and emit_bin_path is accordingly
renamed to emit_digest.
- There was an error related to the default llvm object path when
CacheUse.Whole was selected. I'm not really sure why this didn't manifest
when the binary is also emitted.
This was fixed by improving the path handling related to flush() and
emitLlvmObject().
In general, this commit also improves some of the path handling throughout
the compiler and standard library.
Deprecates std.fs.atomicSymLink and removes the allocator requirement
from the new std.fs.Dir.atomicSymLink. Replaces the two usages of this
within std.
I did not include the TODOs from the original code that were based
off of `switch (err) { ..., else => return err }` not having correct
inference that cases handled in `...` are impossible in the error
union return type because these are not specified in many places but
I can add them back if wanted.
Thank you @squeek502 for help with fixing buffer overflows!
The flag makes compiler_rt and libfuzzer be in debug mode.
Also:
* fuzzer: override debug logs and disable debug logs for frequently
called functions
* std.Build.Fuzz: fix bug of rerunning the old unit test binary
* report errors from rebuilding the unit tests better
* link.Elf: additionally add tsan lib and fuzzer lib to the hash
This flag makes the build runner rebuild unit tests after the pipeline
finishes, if it finds any unit tests.
I did not make this integrate with file system watching yet.
The test runner is updated to detect which tests are fuzz tests.
Run step is updated to track which test indexes are fuzz tests.
* Add -f(no-)sanitize-coverage-trace-pc-guard CLI flag which defaults to
off. This value lowers to TracePCGuard = true (LLVM backend) and -Xclang
-fsanitize-coverage-trace-pc-guard. These settings are not
automatically included with -ffuzz.
* Add `Build.Step.Compile` flag for sanitize_coverage_trace_pc_guard
with appropriate documentation.
* Add `zig cc` integration for the respective flags.
* Avoid crashing in ELF linker code when -ffuzz -femit-llvm-ir used
together.
`PKG_CONFIG` environment variable is used to override path to
pkg-config executable, for example when it's name is prepended by
target triple for cross-compilation purposes:
```
PKG_CONFIG=/usr/bin/aarch64-unknown-linux-gnu-pkgconf zig build
```
Signed-off-by: Eric Joldasov <bratishkaerik@landless-city.net>
Remove --debug-incremental
This flag is also added to the build system. Importantly, this tells
Compile step whether or not to keep the compiler running between
rebuilds. It defaults off because it is currently crashing
zirUpdateRefs.
Changes the `make` function signature to take an options struct, which
additionally includes `watch: bool`. I intentionally am not exposing
this information to configure phase logic.
Also adds global zig cache to the compiler cache prefixes.
Closes#20600