Use inline to vastly simplify the exposed API. This allows a
comptime-known endian parameter to be propogated, making extra functions
for a specific endianness completely unnecessary.
Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:
* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
The majority of these are in comments, some in doc comments which might
affect the generated documentation, and a few in parameter names -
nothing that should be breaking, however.
This valid zig code produces reasonable LLVM IR, however, on the
wasm32-wasi target, when using the wasmtime runtime, the number of
locals of the `isSquare` function exceeds 50000, causing wasmtime
to refuse to execute the binary.
The `inline` keyword in Zig is intended to be used only where it is
semantically necessary; not as an optimization hint. Otherwise, this may
produce unwanted binary bloat for the -OReleaseSmall use case.
In the future, it is possible that we may end up with both `inline`
keyword, which operates as it does in status quo, and additionally
`callconv(.inline_hint)` which has no semantic impact, but may be
observed by optimization passes.
In this commit, I also cleaned up `isSquare` by eliminating an
unnecessary mutable variable, replacing it with several local constants.
Closes#11947.
We already have a LICENSE file that covers the Zig Standard Library. We
no longer need to remind everyone that the license is MIT in every single
file.
Previously this was introduced to clarify the situation for a fork of
Zig that made Zig's LICENSE file harder to find, and replaced it with
their own license that required annual payments to their company.
However that fork now appears to be dead. So there is no need to
reinforce the copyright notice in every single file.
The only known use case for this is the hash-to-curve operation where the top bit is always cleared.
But the function is public, so let's make it work as one would expect in the general case.
Also fix the comment by the way.
* 25519: remove unused const, safeguard against unreduced scalars
No behavior change, but it makes the existing code better match
the forthcoming code for other curves.
Rename nonAdjacentForm() to slide(), remove an unneeded and
confusing constant, and do a reduction in slide() if 257 bits would
be required.
Note that in all the high-level functions, the top bit is always
cleared, so the reduction is never necessary. But since the low-level
functions are public, the check is a safe thing to have.
* 25519: make identityElement public, deprecate neutralElement
Also fix a few comments by the way.
std/crypto: use finer-grained error sets in function signatures
Returning the `crypto.Error` error set for all crypto operations
was very convenient to ensure that errors were used consistently,
and to avoid having multiple error names for the same thing.
The flipside is that callers were forced to always handle all
possible errors, even those that could never be returned by a
function.
This PR makes all functions return union sets of the actual errors
they can return.
The error sets themselves are all limited to a single error.
Larger sets are useful for platform-specific APIs, but we don't have
any of these in `std/crypto`, and I couldn't find any meaningful way
to build larger sets.
https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve
This is quite an important feature to have since many other standards
being worked on depend on this operation.
Brings a couple useful arithmetic operations on field elements by the way.
This PR also adds comments to the functions we expose in 25519/field
so that they can appear in the generated documentation.