When building with LLVM, always do -lole32 -lversion -luuid even when
using the cmake-provided build stuff. Otherwise we get undefined symbols
when linking.
In general, we prefer compiler code to use relative paths based on open
directory handles because this is the most portable. However, sometimes
absolute paths are used, and sometimes relative paths are used that go
up a directory.
The recent improvements in 81d2135ca6ebd71b8c121a19957c8fbf7f87125b
regressed the use case when an absolute path is used for the zig lib
directory mixed with a relative path used for the root source file. This
could happen when, for example, running the standard library tests, like
this:
stage3/bin/zig test ../lib/std/std.zig
This happened because the zig lib dir was inferred to be an absolute
directory based on the zig executable directory, while the root source
file was detected as a relative path. There was no common prefix and so
it was not determined that the std.zig file was inside the lib
directory.
This commit adds a function for resolving paths that preserves relative
path names while allowing absolute paths, and converting relative
upwards paths (e.g. "../foo") to absolute paths. This restores the
previous functionality while remaining compatible with systems such as
WASI that cannot deal with absolute paths.
* Old cmake option: `-DZIG_SKIP_INSTALL_LIB_FILES=ON`
* New cmake option: `-DZIG_NO_LIB=ON`
* Old build.zig option: `-Dskip-install-lib-files`
* New build.zig option: `-Dno-lib`
Motivation is making build commands easier to type.
This option can be used to produce a C backend build of the self-hosted
compiler, which only has the C backend enabled. Once the C backend is
capable of self-hosting, this will be a way for us to replace our stage1
codebase with a C backend build of self-hosted, which we can then use
for bootstrapping. See #5246 for more details.
Using this option right now results in a crash because the C backend is
not yet passing all the behavior tests.
build.zig: add a 'compile' step to compile the self-hosted compiler
without installing it.
Compilation: set cache mode to whole when using the LLVM backend and
--enable-cache is passed.
This makes `zig build` act the same as it does with stage1. Upside is
that a second invocation of `zig build` on an unmodified source tree
will avoid redoing the compilation again. Downside is that it will
proliferate more garbage in the project-local cache (same as stage1).
This can eventually be fixed when Zig's incremental compilation is more
robust; we can go back to having LLVM use CacheMode.incremental and rely
on it detecting no changes and avoiding doing the flush() step.
Previously, you might obtain `-lLLVM-15` from the CMake configuration,
but we might not be able to locate the library if it's not in your
system library path.
Previously, you might obtain `-lLLVM-15` from the CMake configuration,
but we might not be able to locate the library if it's not in your
system library path.
No longer introduce build options for tests. Instead, ZIG_EXE
environment variable is added to any invocation of `zig run` or `zig
test`.
The end result of this branch is the same: there is no longer a
mandatory positional command line argument when invoking zig test
binaries directly.
We now warn the user if config.h could not be located.
This also updates the search to stop early upon encountering a
`.git` directory, so that we avoid recursing outside of the zig
source if possible.
* test/link: initial wasm support
This adds basic parsing and dumping of wasm section so they
can be tested using the new linker-test infrastructure.
* test/link: all wasm sections parsing and dumping
We now parse and dump all sections for the wasm binary format.
Currently, this only dumps the name of a custom section.
Later this should also dump symbol table, name, linking metadata and relocations.
All of those live within the custom sections.
* Add wasm linker test
This also fixes a parser mistake in reading the flags.
* test/link: implement linker tests wasm & fixes
Adds several test cases to test the wasm self-hosted linker.
This also introduces fixes that were caught during the implementation
of those tests.
* test-runner: obey omit_stage2 for standalone
When a standalone test requires stage2, but stage2 is omit
from the compiler, such test case will not be included as part
of the test suite that is being ran. This is to support CI's
where we omit stage2 to lower the memory usage.
Instead of always using std.testing.allocator, the test harness now follows
the same logic as self-hosted for choosing an allocator - that is - it
uses C allocator when linking libc, std.testing.allocator otherwise, and
respects `-Dforce-gpa` to override the decision. I did this because
I found GeneralPurposeAllocator to be prohibitively slow when doing
multi-threading, even in the context of a debug build.
There is now a second thread pool which is used to spawn each
test case. The stage2 tests are passed the first thread pool. If it were
only multi-threading the stage1 tests then we could use the same thread
pool for everything. However, the problem with this strategy with stage2
is that stage2 wants to spawn tasks and then call wait() on the main
thread. If we use the same thread pool for everything, we get a deadlock
because all the threads end up all hanging at wait() and nothing is
getting done. So we use our second thread pool to simulate a "process pool"
of sorts.
I spent most of the time working on this commit scratching my head trying
to figure out why I was getting ETXTBSY when spawning the test cases.
Turns out it's a fundamental Unix design flaw, already a known, unsolved
issue by Go and Java maintainers:
https://github.com/golang/go/issues/22315https://bugs.openjdk.org/browse/JDK-8068370
With this change, the following command, executed on my laptop, went from
6m24s to 1m44s:
```
stage1/bin/zig build test-cases -fqemu -fwasmtime -Denable-llvm
```
closes#11818