The steps to repro this issue are:
zig build-obj hello.zig -target x86_64-windows-msvc
zig build-exe hello.obj -target x86_64-windows-msvc --subsystem console
-lkernel32 -lntdll
What was happening is that the main Compilation added a work item to
produce kernel32.lib. Then it added a sub-Compilation to build zig's
libc, which ended up calling a function with extern "kernel32", which
caused the sub-Compilation to also try to produce kernel32.lib. The main
Compilation and sub-Compilation do not coordinate about the set of
import libraries that they will be trying to build, so this caused a
deadlock.
This commit solves the problem by disabling the extern "foo" feature
from working when building compiler_rt or libc. Zig's linker code is now
responsible for putting the appropriate import libs on the linker line,
if any for compiler_rt and libc.
Related: #5825
Cache exposes BinDigest.
Compilation gains a set of a BinDigest for every C/C++ source file. We
detect when the same source/flags have already been added and emit a
compile error. This prevents a deadlock in the caching system.
Closes#7308
Previously, when choosing the local cache directory, if there was no
root source file, an explicitly chosen path, or other clues, zig would
choose cwd + zig-cache/ as the local cache directory.
This can be problematic if Zig is invoked with the CWD set to a
read-only directory, or a directory unrelated to the actual source files
being compiled. In the real world, we see this when using `zig cc` with
CGo, which for some reason changes the current working directory to the
read-only go standard library path before running the C compiler.
This commit conservatively chooses to use the global cache directory
as the local cache directory when there is no other reasonable choice,
and no longer will rely on the cwd path to choose a local cache directory.
As a reminder, the --cache-dir CLI flag and ZIG_LOCAL_CACHE_DIR
environment variable are available for overriding the decision. For the
zig build system, it will always choose the directory that build.zig is
+ zig-cache/.
Closes#7342
* Field global_cache_root was added to Builder struct along with
mandatory argument for build_runner.zig. Logic for using the custom
global cache was also added.
* The arguments --cache-dir and --global-cache-dir are no longer passed
directly through to build_runner.zig and are instead only passed through the
mandatory cache_root and global_cache_root arguments.
In C, enums are represented as signed integers, so casting from an enum to an integer
should use the "cast integer to integer" translation code path. Previously it used the
"cast enum to generic non-enum" code path, because enums were not being treated as integers.
Ultimately this can produce zig code that fails to compile if the destination type does not
support the full range of enum values (e.g. translated C code that casts an enum value to an
unsigned integer would fail to compile since enums are signed integers, and unsigned integers
cannot represent the full range of values that signed ones can).
One interesting thing that came up during testing is that the implicit enum-to-int cast that
occurs when an enum is used in a boolean expression was parsed as an (int) by some versions of
the zig compiler, and an (unsigned int) cast by others. Specifically, the following code:
```c
enum Foo {Bar, Baz};
// ...
enum Foo foo = Bar;
if (0 || foo) {
// do something
}
```
When tested on MacOS, Linux, and Windows using a compiler built from the Windows Zig Compiler
Dev Kit, the above code would emit a cast to c_uint:
`if (false or (@bitCast(c_uint, @enumToInt(foo)) != 0)) {}`
However when tested on Windows with a Zig compiler built using MSVC, it produces:
`if (false or (@bitCast(c_int, @enumToInt(foo)) != 0)) {}`
In this particular case I don't think it matters, since a c_int and c_uint will have the same
representation for zero, but I'm not sure if this is ultimately the result of
implementation-defined behavior or something else.
Because of this, I added explicit casts in the `translate_c.zig` tests, to ensure that the
emitted zig source exactly matches across platforms. I also added a behavior test in
`run_translated_c.zig` that uses the old implicit casts from `translate_c.zig` to ensure
that the emitted Zig code behaves the same as the C code regardless of what cast is used.
Previously, --name would only be inferred if there was exactly 1 C
source file or exactly 1 object. Now it will be inferred if there is at
least one of either.
This allows to have multiple instances of `zig build` at the same
time. For example when you have a long running `zig build run` and
then want to run `zig build somethingelse`.
passthrough mode does not mean always exit - it just means to pass
through stdio and exit if the child process exits, without doing any
special error reporting.
This commit adds:
ZIG_LOCAL_CACHE_DIR corresponding to --cache-dir
ZIG_GLOBAL_CACHE_DIR corresponding to --global-cache-dir
ZIG_LIB_DIR corresponding to --override-lib-dir
The main use case is for `zig cc` where we are bound by clang's CLI
options and need alternate channels to pass these configuration options.
Previously, when mixing Zig and C/C++ code for windows-gnu targets, zig
would get codeview format but the C/C++ code would not get any debug
info. Now, C/C++ code properly emits debug info in codeview format and
everything just works.
The code is a bit fragile so it was causing CI failures on x86_64-macos.
Also the patch up code is only needed for aarch64-macos, so we were
doing unnecessary work.
restore cmake to be capable of figuring out the zig version
restore config.h and config.zig. config.h is used to detect whether we
should propagate cmake configuration information to build.zig; however
it can be overridden with -Dstatic-llvm.
fix not passing -DZIG_LINK_MODE with zig build.
when using the cmake build path, build.zig no longer tries to call
llvm-config. Instead it relies 100% on the LLVM_LIBRARIES cmake variable.
build.zig logic reworked and simplified.
The main idea here is that there are now 2 ways to get a stage1 zig
binary:
* The cmake path. Requirements: cmake, system C++ compiler, system
LLVM, LLD, Clang libraries, compiled by the system C++ compiler.
* The zig path. Requirements: a zig installation, system LLVM, LLD,
Clang libraries, compiled by the zig installation.
Note that the former can be used to now take the latter path.
Removed config.h.in and config.zig.in. The build.zig script no longer is
coupled to the cmake script.
cmake no longer tries to determine the zig version. A build with cmake
will yield a stage1 zig binary that reports 0.0.0+zig0. This is going to
get reverted.
`zig build` now accepts `-Dstage1` which will build the stage1 compiler,
and put the stage2 backend behind a feature flag.
build.zig is simplified to only support the use case of enabling LLVM
support when the LLVM, LLD, and Clang libraries were built by zig. This
part is probably sadly going to have to get reverted to make package
maintainers happy.
Zig build system addBuildOption supports a couple new types.
The biggest reason to make this change is that the zig path is an
attractive option for doing compiler development work on Windows. It
allows people to work on the compiler without having MSVC installed,
using only a .zip file that contains Zig + LLVM/LLD/Clang libraries.
* Remove function parseAnyBaseInt.
* Replace calls to parseAnyBaseInt to calls to std.fmt.parseUnsigned
with radix 0.
* Replace calls to parseInt where the type is unsigned with calls to
parseUnsigned. Note that the functionality of these arguments haven't
changed, they still retain the original radix specified.
When the tag type is not a zero-sized type (eg. `enum(i32)`) we
absolutely need to avoid constant-folding this values. Doing so masked
any invalid input and, since the folding was not even applied
consistently, introduced some hard to catch errors.
Fill in the correct value instead of leaving everything uninitialized.
This problem can be noticed in behavior/union.zig but it's masked by
some other "optimization" kicking in at the wrong time, the following
commits will address that.
Use case:
zig build-exe non_existent_file.zig
Previous behavior:
error.FileNotFound, followed by an error return trace
Behavior after this commit:
error: unable to read non_existent_file.zig: FileNotFound
(end of stderr, exit code 1)
This turns AllErrors.Message into a tagged union which now has the
capability to represent both "plain" errors as well as source-based
errors (with file, line, column, byte offset). The "no entry point found"
error has moved to be a plain error message.