> Note: This first part is mostly a rephrasing of https://flatt.tech/research/posts/batbadbut-you-cant-securely-execute-commands-on-windows/
> See that article for more details
On Windows, it is possible to execute `.bat`/`.cmd` scripts via CreateProcessW. When this happens, `CreateProcessW` will (under-the-hood) spawn a `cmd.exe` process with the path to the script and the args like so:
cmd.exe /c script.bat arg1 arg2
This is a problem because:
- `cmd.exe` has its own, separate, parsing/escaping rules for arguments
- Environment variables in arguments will be expanded before the `cmd.exe` parsing rules are applied
Together, this means that (1) maliciously constructed arguments can lead to arbitrary command execution via the APIs in `std.process.Child` and (2) escaping according to the rules of `cmd.exe` is not enough on its own.
A basic example argv field that reproduces the vulnerability (this will erroneously spawn `calc.exe`):
.argv = &.{ "test.bat", "\"&calc.exe" },
And one that takes advantage of environment variable expansion to still spawn calc.exe even if the args are properly escaped for `cmd.exe`:
.argv = &.{ "test.bat", "%CMDCMDLINE:~-1%&calc.exe" },
(note: if these spawned e.g. `test.exe` instead of `test.bat`, they wouldn't be vulnerable; it's only `.bat`/`.cmd` scripts that are vulnerable since they go through `cmd.exe`)
Zig allows passing `.bat`/`.cmd` scripts as `argv[0]` via `std.process.Child`, so the Zig API is affected by this vulnerability. Note also that Zig will search `PATH` for `.bat`/`.cmd` scripts, so spawning something like `foo` may end up executing `foo.bat` somewhere in the PATH (the PATH searching of Zig matches the behavior of cmd.exe).
> Side note to keep in mind: On Windows, the extension is significant in terms of how Windows will try to execute the command. If the extension is not `.bat`/`.cmd`, we know that it will not attempt to be executed as a `.bat`/`.cmd` script (and vice versa). This means that we can just look at the extension to know if we are trying to execute a `.bat`/`.cmd` script.
---
This general class of problem has been documented before in 2011 here:
https://learn.microsoft.com/en-us/archive/blogs/twistylittlepassagesallalike/everyone-quotes-command-line-arguments-the-wrong-way
and the course of action it suggests for escaping when executing .bat/.cmd files is:
- Escape first using the non-cmd.exe rules
- Then escape all cmd.exe 'metacharacters' (`(`, `)`, `%`, `!`, `^`, `"`, `<`, `>`, `&`, and `|`) with `^`
However, escaping with ^ on its own is insufficient because it does not stop cmd.exe from expanding environment variables. For example:
```
args.bat %PATH%
```
escaped with ^ (and wrapped in quotes that are also escaped), it *will* stop cmd.exe from expanding `%PATH%`:
```
> args.bat ^"^%PATH^%^"
"%PATH%"
```
but it will still try to expand `%PATH^%`:
```
set PATH^^=123
> args.bat ^"^%PATH^%^"
"123"
```
The goal is to stop *all* environment variable expansion, so this won't work.
Another problem with the ^ approach is that it does not seem to allow all possible command lines to round trip through cmd.exe (as far as I can tell at least).
One known example:
```
args.bat ^"\^"key^=value\^"^"
```
where args.bat is:
```
@echo %1 %2 %3 %4 %5 %6 %7 %8 %9
```
will print
```
"\"key value\""
```
(it will turn the `=` into a space for an unknown reason; other minor variations do roundtrip, e.g. `\^"key^=value\^"`, `^"key^=value^"`, so it's unclear what's going on)
It may actually be possible to escape with ^ such that every possible command line round trips correctly, but it's probably not worth the effort to figure it out, since the suggested mitigation for BatBadBut has better roundtripping and leads to less garbled command lines overall.
---
Ultimately, the mitigation used here is the same as the one suggested in:
https://flatt.tech/research/posts/batbadbut-you-cant-securely-execute-commands-on-windows/
The mitigation steps are reproduced here, noted with one deviation that Zig makes (following Rust's lead):
1. Replace percent sign (%) with %%cd:~,%.
2. Replace the backslash (\) in front of the double quote (") with two backslashes (\\).
3. Replace the double quote (") with two double quotes ("").
4. ~~Remove newline characters (\n).~~
- Instead, `\n`, `\r`, and NUL are disallowed and will trigger `error.InvalidBatchScriptArg` if they are found in `argv`. These three characters do not roundtrip through a `.bat` file and therefore are of dubious/no use. It's unclear to me if `\n` in particular is relevant to the BatBadBut vulnerability (I wasn't able to find a reproduction with \n and the post doesn't mention anything about it except in the suggested mitigation steps); it just seems to act as a 'end of arguments' marker and therefore anything after the `\n` is lost (and same with NUL). `\r` seems to be stripped from the command line arguments when passed through a `.bat`/`.cmd`, so that is also disallowed to ensure that `argv` can always fully roundtrip through `.bat`/`.cmd`.
5. Enclose the argument with double quotes (").
The escaped command line is then run as something like:
cmd.exe /d /e:ON /v:OFF /c "foo.bat arg1 arg2"
Note: Previously, we would pass `foo.bat arg1 arg2` as the command line and the path to `foo.bat` as the app name and let CreateProcessW handle the `cmd.exe` spawning for us, but because we need to pass `/e:ON` and `/v:OFF` to cmd.exe to ensure the mitigation is effective, that is no longer tenable. Instead, we now get the full path to `cmd.exe` and use that as the app name when executing `.bat`/`.cmd` files.
---
A standalone test has also been added that tests two things:
1. Known reproductions of the vulnerability are tested to ensure that they do not reproduce the vulnerability
2. Randomly generated command line arguments roundtrip when passed to a `.bat` file and then are passed from the `.bat` file to a `.exe`. This fuzz test is as thorough as possible--it tests that things like arbitrary Unicode codepoints and unpaired surrogates roundtrip successfully.
Note: In order for the `CreateProcessW` -> `.bat` -> `.exe` roundtripping to succeed, the .exe must split the arguments using the post-2008 C runtime argv splitting implementation, see https://github.com/ziglang/zig/pull/19655 for details on when that change was made in Zig.
ensureTotalCapacityPrecise only satisfies the assumptions made in the ArrayListImpl functions (that there's already enough capacity for the entire converted string if it's all ASCII) when the ArrayList has no items, otherwise it would hit illegal behavior.
* fix UB when Thread.spawn fails, and we try to join uninitialized
threads (through new `thread_count` variable).
* make sure that the tests pins down synchronization guarantees: in the
main thread, we can observe `1` due to synchronization from
`Thread.join()`. To make sure that once uses Acq/Rel, and not just
relaxed, we should also additionally check that each thread observes
1, regardless of whether it was the one to call once.
On Windows, the command line arguments of a program are a single WTF-16 encoded string and it's up to the program to split it into an array of strings. In C/C++, the entry point of the C runtime takes care of splitting the command line and passing argc/argv to the main function.
https://github.com/ziglang/zig/pull/18309 updated ArgIteratorWindows to match the behavior of CommandLineToArgvW, but it turns out that CommandLineToArgvW's behavior does not match the behavior of the C runtime post-2008. In 2008, the C runtime argv splitting changed how it handles consecutive double quotes within a quoted argument (it's now considered an escaped quote, e.g. `"foo""bar"` post-2008 would get parsed into `foo"bar`), and the rules around argv[0] were also changed.
This commit makes ArgIteratorWindows match the behavior of the post-2008 C runtime, and adds a standalone test that verifies the behavior matches both the MSVC and MinGW argv splitting exactly in all cases (it checks that randomly generated command line strings get split the same way).
The motivation here is roughly the same as when the same change was made in Rust (https://github.com/rust-lang/rust/pull/87580), that is (paraphrased):
- Consistent behavior between Zig and modern C/C++ programs
- Allows users to escape double quotes in a way that can be more straightforward
Additionally, the suggested mitigation for BatBadBut (https://flatt.tech/research/posts/batbadbut-you-cant-securely-execute-commands-on-windows/) relies on the post-2008 argv splitting behavior for roundtripping of the arguments given to `cmd.exe`. Note: it's not necessary for the suggested mitigation to work, but it is necessary for the suggested escaping to be parsed back into the intended argv by ArgIteratorWindows after being run through a `.bat` file.
signature/s:
Algorithm Before After
---------------+---------+-------
ecdsa-p256 3707 4396
ecdsa-p384 1067 1332
ecdsa-secp256k1 4490 5147
Add ECDSA to the benchmark by the way.
This makes the host http header have the port if and only if it differs
from the defaults based on the protocol.
This is an alternate implementation that closes#19624.
This flips things around such that std/hash/crc.zig is generated
by the catalog-based generation tool, and the real code that used
to be in that file is moved out to std/hash/crc/impl.zig. The
generated tests are moved to std/hash/crc/test.zig. By going this
route, we eliminate the need for usingnamespace without changing
anything for callers of these interfaces. The Crc32 tests are
simply added to the fixed part of the generated output and
compactified a bit.
This was the second-to-last usage of usingnamespace left in std.
Don't know why UEFI wasn't excluded but freestanding is, probably an oversight since I want to have detailed debug info on my panic function on my Headstart bootloader.
The previous commit deleted the deprecated API and then made all the
follow-up changes; this commit reverts only the breaking API changes.
This commit can be reverted once 0.12.0 is tagged.
This adds the *std.Build owner to LazyPath so that lazy paths returned
from a dependency can be used in the application without friction or
footguns.
closes#19313
This allows `std.Uri.resolve_inplace` to properly preserve the fact
that `new` is already escaped but `base` may not be. I originally tried
just moving `raw_uri` around, but it made uri resolution unmanagably
complicated, so I instead added per-component information to `Uri` which
allows extra allocations to be avoided when constructing uris with
components from different sources, and in some cases, deferring the work
all the way to when the uri is printed, where an allocator may not even
be needed.
Closes#19587
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
This adds useful standard SHA3-based constructions from the
NIST SP 800-185 document:
- cSHAKE: similar to the SHAKE extensible hash function, but
with the addition of a context parameter.
- KMAC: SHAKE-based authentication / keyed XOF
- TupleHash: unambiguous hashing of tuples
These are required by recent protocols and specifications.
They also offer properties that none of the currently available
constructions in the stdlib offer, especially the ability to safely
hash tuples.
Other keyed hash functions/XOFs will fall back to using HMAC, which
is suboptimal from a performance perspective, but fine from a
security perspective.
Commit 0b7123f41d66bdda4da29d59623299d47b29aefb regressed the
`include_path` option of ConfigHeader which is intended to set the path,
including subdirectories, that C code would pass to an include
directive.
For example if it passes
.include_path = "config/config.h",
Then the C code should be able to have
#include "config/config.h"
This regressed https://github.com/andrewrk/nasm/ but this commit fixes
it.
This field has not been referenced by compile steps since
e76ce2c1d0d3988359267fd3030a81a52ec99f3f, all the way back in 2019.
To specify the language standard, pass `-std=[value]` as a regular
C flag instead.