Mostly on macOS, since Loris showed me a not-great stack trace, and I
spent 8 hours trying to make it better. The dyld shared cache is
designed in a way which makes this really hard to do right, and
documentation is non-existent, but this *seems* to work pretty well.
I'll leave the ruling on whether I did a good job to CI and our users.
Our usage of `ucontext_t` in the standard library was kind of
problematic. We unnecessarily mimiced libc-specific structures, and our
`getcontext` implementation was overkill for our use case of stack
tracing.
This commit introduces a new namespace, `std.debug.cpu_context`, which
contains "context" types for various architectures (currently x86,
x86_64, ARM, and AARCH64) containing the general-purpose CPU registers;
the ones needed in practice for stack unwinding. Each implementation has
a function `current` which populates the structure using inline
assembly. The structure is user-overrideable, though that should only be
necessary if the standard library does not have an implementation for
the *architecture*: that is to say, none of this is OS-dependent.
Of course, in POSIX signal handlers, we get a `ucontext_t` from the
kernel. The function `std.debug.cpu_context.fromPosixSignalContext`
converts this to a `std.debug.cpu_context.Native` with a big ol' target
switch.
This functionality is not exposed from `std.c` or `std.posix`, and
neither are `ucontext_t`, `mcontext_t`, or `getcontext`. The rationale
is that these types and functions do not conform to a specific ABI, and
in fact tend to get updated over time based on CPU features and
extensions; in addition, different libcs use different structures which
are "partially compatible" with the kernel structure. Overall, it's a
mess, but all we need is the kernel context, so we can just define a
kernel-compatible structure as long as we don't claim C compatibility by
putting it in `std.c` or `std.posix`.
This change resulted in a few nice `std.debug` simplifications, but
nothing too noteworthy. However, the main benefit of this change is that
DWARF unwinding---sometimes necessary for collecting stack traces
reliably---now requires far less target-specific integration.
Also fix a bug I noticed in `PageAllocator` (I found this due to a bug
in my distro's QEMU distribution; thanks, broken QEMU patch!) and I
think a couple of minor bugs in `std.debug`.
Resolves: #23801Resolves: #23802
This only matters if `callMain` is called by a user, since `std.start`
will never itself call `callMain` when `target.os.tag == .other`.
However, it *is* a valid use case for a user to call
`std.start.callMain` in their own startup logic, so this makes sense.
Turns out that RtlCaptureStackBackTrace is actually just doing FP (ebp)
unwinding under the hood, making this logic completely redundant with
our own FP-walking implementation; see added comment for details.
Previously, the `test-stack-traces` step was essentially just testing
error traces, and even there we didn't have much coverage. This commit
solves that by splitting the "stack trace" tests into two separate
harnesses: the "stack trace" tests are for actual stack traces (i.e.
involving stack unwinding), while the "error trace" tests are
specifically for error return traces.
The "stack trace" tests will test different configurations of:
* `-lc`
* `-fPIE`
* `-fomit-frame-pointer`
* `-fllvm`
* unwind tables (currently disabled)
* strip debug info (currently disabled)
The main goal there is to test *stack unwinding* under different
conditions. Meanwhile, the "error trace" tests will test different
configurations of `-O` and `-fllvm`; the main goal here, aside from
checking that error traces themselves do not miscompile, is to check
whether debug info is still working even in optimized builds. Of course,
aggressive optimizations *can* thwart debug info no matter what, so as
before, there is a way to disable cases for specific targets / optimize
modes.
The program which converts stack traces into a more validatable format
by removing things like addresses (previously `check-stack-trace.zig`,
now `convert-stack-trace.zig`) has been rewritten and simplified. Also,
thanks to various fixes in this branch, several workarounds have become
unnecessary: for instance, we don't need to ignore the function name
printed in stack traces in release modes, because `std.debug.Dwarf` now
uses the correct DIE for inlined functions!
Neither `test-stack-traces` nor `test-error-traces` does general foreign
architecture testing, because it seems that (at least for now) external
executors often aren't particularly good at handling stack tracing
correctly (looking at you, Wine). Generally, they just test the native
target (this matches the old behavior of `test-stack-traces`). However,
there is one exception: when on an x86_64 or aarch64 host, we will also
test the 32-bit version (x86 or arm) if the OS supports it, because such
executables can be trivially tested without an external executor.
Oh, also, I wrote a bunch of stack trace tests. Previously there was,
erm, *one* test in `test-stack-traces` which wasn't for error traces.
Now there are a good few!
It was possible for `arg6` to be passed as an operand relative to esp.
In that case, the `push` at the top clobbered esp and hence made the
reference to arg6 invalid. This was manifesting in this branch as broken
stack traces on x86-linux due to an `mmap2` syscall accidentally passing
the page offset as non-zero!
This commit fixes a bug introduced in cb0e6d8aa.
We mustn't emit the DT_PLTGOT entry in `.dynamic` in a statically-linked
PIE, because there's no dl to relocate it (and `std.pie.relocate`, or
the PIE relocator in libc, won't touch it). In that case, there cannot
be any PLT entries, so there's no point emitting the `.got.plt` section
at all. If we just don't create that section, `link.Elf` already knows
not to add the DT_PLTGOT entry to `.dynamic`.
Co-authored-by: Jacob Young <jacobly0@users.noreply.github.com>
This abstraction isn't really tied to DWARF at all! Really, we're just
loading some information from an ELF file which is useful for debugging.
That *includes* DWARF, but it also includes other information. For
instance, the other change here:
Now, if DWARF information is missing, `debug.SelfInfo.ElfModule` will
name symbols by finding a matching symtab entry. We actually already do
this on Mach-O, so it makes obvious sense to do the same on ELF! This
change is what motivated the restructuring to begin with.
The symtab work is derived from #22077.
Co-authored-by: geemili <opensource@geemili.xyz>
If it's not given, we should set `first_address` to the return address
of `dumpCurrentStackTrace` to avoid the call to `writeCurrentStackTrace`
appearing in the trace. However, we must only do that if no `context` is
given; if there's a context then we're starting the stack unwind
elsewhere.
The downside of this commit is that more precise errors are no longer
propagated up. However, these errors were pretty useless in isolation
due to them having no context; and regardless, we intentionally swallow
most of them in `std.debug` anyway. Therefore, this is better in
practice, because it allows `std.debug` to give slightly more useful
warnings when handling errors. This commit does that for unwind errors,
for instance, which differentiate between the unwind info being corrupt
vs missing vs inaccessible vs unsupported.
A better solution would be to also include more detailed information via
the diagnostics pattern, but this commit is an incremental improvement.
turns out this isn't technically specific to that target at all; other
targets just don't emit mid-function 'ret' instructions as much so
certain CFI instruction patterns were only seen on aarch64.
thanks to jacob for finding the bug <3