When an error response was encountered, such as 404 not found, the body
wasn't discarded, leading to the string "404 not found" being
incorrectly interpreted as the next request's response.
closes#24732
* std.Io.Reader: fix confused semantics of rebase. Before it was
ambiguous whether it was supposed to be based on end or seek. Now it
is clearly based on seek, with an added assertion for clarity.
* std.crypto.tls.Client: fix panic due to not enough buffer size
available. Also, avoid unnecessary rebasing.
* std.http.Reader: introduce max_head_len to limit HTTP header length.
This prevents crash in underlying reader which may require a minimum
buffer length.
* std.http.Client: choose better buffer sizes for streams and TLS
client. Crucially, the buffer shared by HTTP reader and TLS client
needs to be big enough for all http headers *and* the max TLS record
size. Bump HTTP header size default from 4K to 8K.
fixes#24872
I have noticed however that there are still fetch problems
* std.Io.Reader: appendRemaining no longer supports alignment and has
different rules about how exceeding limit. Fixed bug where it would
return success instead of error.StreamTooLong like it was supposed to.
* std.Io.Reader: simplify appendRemaining and appendRemainingUnlimited
to be implemented based on std.Io.Writer.Allocating
* std.Io.Writer: introduce unreachableRebase
* std.Io.Writer: remove minimum_unused_capacity from Allocating. maybe
that flexibility could have been handy, but let's see if anyone
actually needs it. The field is redundant with the superlinear growth
of ArrayList capacity.
* std.Io.Writer: growingRebase also ensures total capacity on the
preserve parameter, making it no longer necessary to do
ensureTotalCapacity at the usage site of decompression streams.
* std.compress.flate.Decompress: fix rebase not taking into account seek
* std.compress.zstd.Decompress: split into "direct" and "indirect" usage
patterns depending on whether a buffer is provided to init, matching
how flate works. Remove some overzealous asserts that prevented buffer
expansion from within rebase implementation.
* std.zig: fix readSourceFileToAlloc returning an overaligned slice
which was difficult to free correctly.
fixes#24608
This "get" is useless noise and was copied from FixedBufferWriter.
Since this API has not yet landed in a release, now is a good time
to make the breaking change to fix this.
This commit re-enables the --webui functionality on windows, with the caveat that rebuild functionality is still disabled (due to deadlocks caused by reading to / writing from the same non-overlapped socket on multiple threads). I updated the UI to be aware of this, and hide the `Rebuild` button.
http.Server: Remove incorrect advance() call. This was causing browsers to disconnect the websocket, as we were sending undefined bytes.
build.WebServer: Re-enable on windows, but disable functionality that requires receiving messages from the client
build-web: Show total times in tables
This commit replaces the "fuzzer" UI, previously accessed with the
`--fuzz` and `--port` flags, with a more interesting web UI which allows
more interactions with the Zig build system. Most notably, it allows
accessing the data emitted by a new "time report" system, which allows
users to see which parts of Zig programs take the longest to compile.
The option to expose the web UI is `--webui`. By default, it will listen
on `[::1]` on a random port, but any IPv6 or IPv4 address can be
specified with e.g. `--webui=[::1]:8000` or `--webui=127.0.0.1:8000`.
The options `--fuzz` and `--time-report` both imply `--webui` if not
given. Currently, `--webui` is incompatible with `--watch`; specifying
both will cause `zig build` to exit with a fatal error.
When the web UI is enabled, the build runner spawns the web server as
soon as the configure phase completes. The frontend code consists of one
HTML file, one JavaScript file, two CSS files, and a few Zig source
files which are built into a WASM blob on-demand -- this is all very
similar to the old fuzzer UI. Also inherited from the fuzzer UI is that
the build system communicates with web clients over a WebSocket
connection.
When the build finishes, if `--webui` was passed (i.e. if the web server
is running), the build runner does not terminate; it continues running
to serve web requests, allowing interactive control of the build system.
In the web interface is an overall "status" indicating whether a build
is currently running, and also a list of all steps in this build. There
are visual indicators (colors and spinners) for in-progress, succeeded,
and failed steps. There is a "Rebuild" button which will cause the build
system to reset the state of every step (note that this does not affect
caching) and evaluate the step graph again.
If `--time-report` is passed to `zig build`, a new section of the
interface becomes visible, which associates every build step with a
"time report". For most steps, this is just a simple "time taken" value.
However, for `Compile` steps, the compiler communicates with the build
system to provide it with much more interesting information: time taken
for various pipeline phases, with a per-declaration and per-file
breakdown, sorted by slowest declarations/files first. This feature is
still in its early stages: the data can be a little tricky to
understand, and there is no way to, for instance, sort by different
properties, or filter to certain files. However, it has already given us
some interesting statistics, and can be useful for spotting, for
instance, particularly complex and slow compile-time logic.
Additionally, if a compilation uses LLVM, its time report includes the
"LLVM pass timing" information, which was previously accessible with the
(now removed) `-ftime-report` compiler flag.
To make time reports more useful, ZIR and compilation caches are ignored
by the Zig compiler when they are enabled -- in other words, `Compile`
steps *always* run, even if their result should be cached. This means
that the flag can be used to analyze a project's compile time without
having to repeatedly clear cache directory, for instance. However, when
using `-fincremental`, updates other than the first will only show you
the statistics for what changed on that particular update. Notably, this
gives us a fairly nice way to see exactly which declarations were
re-analyzed by an incremental update.
If `--fuzz` is passed to `zig build`, another section of the web
interface becomes visible, this time exposing the fuzzer. This is quite
similar to the fuzzer UI this commit replaces, with only a few cosmetic
tweaks. The interface is closer than before to supporting multiple fuzz
steps at a time (in line with the overall strategy for this build UI,
the goal will be for all of the fuzz steps to be accessible in the same
interface), but still doesn't actually support it. The fuzzer UI looks
quite different under the hood: as a result, various bugs are fixed,
although other bugs remain. For instance, viewing the source code of any
file other than the root of the main module is completely broken (as on
master) due to some bogus file-to-module assignment logic in the fuzzer
UI.
Implementation notes:
* The `lib/build-web/` directory holds the client side of the web UI.
* The general server logic is in `std.Build.WebServer`.
* Fuzzing-specific logic is in `std.Build.Fuzz`.
* `std.Build.abi` is the new home of `std.Build.Fuzz.abi`, since it now
relates to the build system web UI in general.
* The build runner now has an **actual** general-purpose allocator,
because thanks to `--watch` and `--webui`, the process can be
arbitrarily long-lived. The gpa is `std.heap.DebugAllocator`, but the
arena remains backed by `std.heap.page_allocator` for efficiency. I
fixed several crashes caused by conflation of `gpa` and `arena` in the
build runner and `std.Build`, but there may still be some I have
missed.
* The I/O logic in `std.Build.WebServer` is pretty gnarly; there are a
*lot* of threads involved. I anticipate this situation improving
significantly once the `std.Io` interface (with concurrency support)
is introduced.
This passes tests but it doesn't provide as big a window size as is
required to decompress larger streams.
The next commit in this branch will work towards that, without
introducing an additional buffer.
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
This is the same mode used by openssh for private keys. This does not
change the mode of an existing file, so users who need something
different can pre-create the file with their designed permissions or
change them after the fact, and running another process that writes to
the key log will not change it back.
By default, programs built in debug mode that open a https connection
will append secrets to the file specified in the SSLKEYLOGFILE
environment variable to allow protocol debugging by external programs.