dd62a6d2e8de522187fd096354e7156cca1821c5 short-circuited the logic of
`asmExpr` by emitting ZIR for `@compileError("...")`. This caused false
positive "unreachable code" errors for stage1 when there was an
expression in the asm template.
This commit makes such cases instead go through logic of `asmExpr` like
normal, however the asm template is set to 0. This is then picked up in
Sema (part of stage2, not stage1) and reported as "assembly code must
use string literal syntax".
* stage1: change the `@typeName` of `@TypeOf(undefined)`,
`@TypeOf(null)`, and `@TypeOf(.foo)` to match stage2.
* move passing behavior tests to the passing-for-stage2 section.
Previously, when a coercion needed to be inserted into a break
instruction, the `br` AIR instruction would be rewritten so that the
block operand was a sub-block that did the coercion. The problem is that
the sub-block itself was never added to the parent block, resulting in
the `br` instruction operand being a bad reference.
Now, the `br` AIR instruction that needs to have coercion instructions
added is replaced with the sub-block itself with type `noreturn`, and
then the sub-block has the coercion instructions and a new `br`
instruction that breaks from the original block.
LLVM backend needed to be fixed to lower `noreturn` blocks without
emitting an unused LLVM basic block.
When adding test coverage, I noticed an inconsistency in which source
location the compile error was pointing to for `@embedFile` errors vs
`@import` errors. They now both point to the same place, the string
operand.
closes#9404closes#9939
* Introduce a mechanism into Sema for emitting a compile error when an
integer is too big and we need it to fit into a usize.
* Add `@intCast` where necessary
* link/MachO: fix an unnecessary allocation when all that was happening
was appending zeroes to an ArrayList.
* Add `error.Overflow` as a possible error to some codepaths, allowing
usage of `math.intCast`.
closes#9710
New AIR instruction: `optional_payload_ptr_set`
It's like `optional_payload_ptr` except it sets the non-null bit.
When storing to the payload via a result location that is an optional,
`optional_payload_ptr_set` is now emitted. There is a new algorithm in
`zirCoerceResultPtr` which stores a dummy value through the result
pointer into a temporary block, and then pops off the AIR instructions
from the temporary block in order to determine how to transform the
result location pointer in case any in-between coercions need to happen.
Fixes a couple of behavior tests regarding optionals.
Because ArrayList.initCapacity uses 'precise' capacity allocation, this should save memory on average, and definitely will save memory in cases where ArrayList is used where a regular allocated slice could have also be used.
The way `zig test` works is that it uses a stand-in
var test_functions: []const TestFn = undefined;
during semantic analysis, but then just before codegen, it swaps out the
value with a constant like this:
const test_functions: []const TestFn = .{foo, bar, baz, etc};
Before this commit, the `Module.Variable` associated with the stand-in
value was leaked; now it is properly cleaned up before being replaced.
Previously, it would emit a ret_ptr AIR instruction but that is not
correct because such an instruction would reference the result pointer
of the caller function rather than the callee function.
Instead, we emit an alloc instruction in this case. `ret_load` already
handles inlining correctly.
* C pointer types always have allowzero set to true but they omit the
word allowzero when printed.
* Implement coercion from C pointers to other pointers.
* Implement in-memory coercion for slices and pointer-like optionals.
* Make slicing a C pointer drop the allowzero bit.
* Value representation for pointer-like optionals is now allowed to use
pointer tag values in addition to the `opt_payload` tag.
* AstGen: always use `typeof` and never `typeof_elem` on the
`switch_cond`/`switch_cond_ref` instruction because both variants
return a value and not a pointer.
- Delete the `typeof_elem` ZIR instruction since it is no longer
needed.
* Sema: validateUnionInit now recognizes a comptime mutable value and
no longer emits a compile error saying "cannot evaluate constant
expression"
- Still to-do is detecting comptime union values in a function that
is not being executed at compile-time.
- This is still to-do for structs too.
* Sema: when emitting a call AIR instruction, call resolveTypeLayout on
all the parameter types as well as the return type.
* `Type.structFieldOffset` now works for unions in addition to structs.
* Fix backend using wrong union field of the slice instruction.
* LLVM backend properly sets alignment on global variables.
* Sema: add coercion for *T to *[1]T
* Sema: pointers to Decls with explicit alignment now have alignment
metadata in them.
Also switch to the more efficient encoding of the bitcast instruction
when the destination type is anyerror in 2 common cases.
LLVM backend: fix using the wrong type as the optional payload type in
the `wrap_optional` AIR instruction.
After a discussion about language specs, this seems like the best way to
go, because it's simpler to reason about both for humans and compilers.
The `bitcast_result_ptr` ZIR instruction is no longer needed.
This commit also implements writing enums, arrays, and vectors to
virtual memory at compile-time.
This unlocked some more of compiler-rt being able to build, which
in turn unlocks saturating arithmetic behavior tests.
There was also a memory leak in the comptime closure system which is now
fixed.
AIR:
* div is renamed to div_trunc.
* Add div_float, div_floor, div_exact.
- Implemented in Sema and LLVM codegen. C backend has a stub.
Improvements to std.math.big.Int:
* Add `eqZero` function to `Mutable`.
* Fix incorrect results for `divFloor`.
Compiler-rt:
* Add muloti4 to the stage2 section.
* Restructure elemPtr a bit
* New AIR instruction: slice_elem_ptr, which returns a pointer to an element of a slice
* Value: adapt elemPtr to work on slices