This change extends the "lifetime" of the error return trace associated
with an error to continue throughout the block of a `const` variable
that it is assigned to.
This is necessary to support patterns like this one in test_runner.zig:
```zig
const result = foo();
if (result) |_| {
// ... success logic
} else |err| {
// `foo()` should be included in the error trace here
return error.TestFailed;
}
```
To make this happen, the majority of the error return trace popping logic
needed to move into Sema, since `const x = foo();` cannot be examined
syntactically to determine whether it modifies the error return trace. We
also have to make sure not to delete pertinent block information before it
makes it to Sema, so that Sema can pop/restore around blocks correctly.
* Why do this only for `const` and not `var`? *
There is room to relax things for `var`, but only a little bit. We could
do the same thing we do for const and keep the error trace alive for the
remainder of the block where the *assignment* happens. Any wider scope
would violate the stack discipline for traces, so it's not viable.
In the end, I decided the most consistent behavior for the user is just
to kill all error return traces assigned to a mutable `var`.
In order to enforce a strict stack discipline for error return traces,
we cannot track error return traces that are stored in variables:
```zig
const x = errorable(); // errorable()'s error return trace is killed here
// v-- error trace starts here instead
return x catch error.UnknownError;
```
In order to propagate error return traces, function calls need to be passed
directly to an error-handling expression (`if`, `catch`, `try` or `return`):
```zig
// When passed directly to `catch`, the return trace is propagated
return errorable() catch error.UnknownError;
// Using a break also works
return blk: {
// code here
break :blk errorable();
} catch error.UnknownError;
```
Why do we need this restriction? Without it, multiple errors can co-exist
with their own error traces. Handling that situation correctly means either:
a. Dynamically allocating trace memory and tracking lifetimes, OR
b. Allowing the production of one error to interfere with the trace of another
(which is the current status quo)
This is piece (3/3) of https://github.com/ziglang/zig/issues/1923#issuecomment-1218495574
It is not yet determined whether the Zig language will land on
text-based string concatenation for inline assembly, as Zig 0.9.1
allows, and as this commit allows, or whether it will introduce a new
assembly syntax more integrated with the rest of the language. Until
this decision is made, this commit relaxes the restriction which was
preventing inline assembly expressions from using comptime expressions
for the assembly source code.
cmpxchg_weak and cmpxchg_strong are not very common; demote them to
extended operations to make some headroom.
This commit does not change any behavior, only memory layout of the
compiler.
Storing defers this way has the benefits that the defer doesn't get
analyzed multiple times in AstGen, it takes up less space, and it
makes Sema aware of defers allowing for 'unreachable else prong'
error on error sets in generic code.
The disadvantage is that it is a bit more complex and errdefers with
payloads now emit a placeholder instruction (but those are rare).
Sema.zig before:
Total ZIR bytes: 3.7794370651245117MiB
Instructions: 238996 (2.051319122314453MiB)
String Table Bytes: 89.2802734375KiB
Extra Data Items: 430144 (1.640869140625MiB)
Sema.zig after:
Total ZIR bytes: 3.3344192504882812MiB
Instructions: 211829 (1.8181428909301758MiB)
String Table Bytes: 89.2802734375KiB
Extra Data Items: 374611 (1.4290275573730469MiB)
Adds a `unused: u32 = 0` field to `Zir.Header`.
We could leave this as padding, however it triggers a Valgrind warning because
we read and write undefined bytes to the file system. This is harmless, but
it's essentially free to have a zero field here and makes the warning go away,
making it more likely that following Valgrind warnings will be taken seriously.
Removed the copy of param_names inside of Fn and changed to
implementation of getParamName to fetch to parameter name from the ZIR.
The signature of getParamName was also changed to take an additional
*Module argument.
Previously, struct types, alignment values, and initialization
expressions were all lowered into the same ZIR body, which caused false
positive "depends on itself" errors when the initialization expression
depended on the size of the struct.
This also uses ResultLoc.coerced_ty for struct field alignment and
initialization values. The resulting ZIR encoding ends up being roughly
the same, neither smaller nor larger than previously.
Closes#12029
And use it to debug a LazySrcLoc in stage2 that is set to a bogus value.
The actual fix in this commit is:
```diff
- try sema.emitBackwardBranch(&child_block, call_src);
+ try sema.emitBackwardBranch(block, call_src);
```
Whenever a `ref` instruction is needed, it is created and saved in
`AstGen.ref_table` instead of being immediately appended to the current
block body. Then, when the referenced instruction is being added to the
parent block (e.g. from setBlockBody), if it has a ref_table entry, then
the ref instruction is added directly after the instruction being referenced.
This makes sure two properties are upheld:
1. All pointers to the same locals return the same address. This is required
to be compliant with the language specification.
2. `ref` instructions will dominate their uses. This is a required property
of ZIR.
A complication arises when a ref instruction refs another ref
instruction. The logic in appendBodyWithFixups must take this into
account, recursively handling ref refs.
* Introduce "_ptr" variants of ZIR try instruction to disallow constructs
such as `try` on a pointer value instead of an error union value.
* Disable the "_inline" variants of the ZIR try instruction for now because
we are out of ZIR tags. I will free up some space in an independent commit.
* AstGen: fix tryExpr calling rvalue() on ResultLoc.ref
The main purpose of this commit is to prepare to implement support for
callconv(), align(), linksection(), and addrspace() annotations on
generic functions where the provided expression depends on comptime
parameters (making the function generic).
It's a rather involved change, so this commit only makes the necessary
changes to AstGen without regressing any behavior, and a follow-up
commit can finish the task by making the enhancements to Sema.
By my quick estimation, the new encoding for functions is a negligible
improvement - along the lines of 0.005% fewer total ZIR bytes on
average. Still, it's nice that this commit, while adding more
data into ZIR, actually ends up reducing the storage size thanks to a
slightly more sophisticated encoding.
Zir.Inst.ExtendedFunc is renamed to Zir.Inst.FuncFancy to eliminate
confusion about it being an extended instruction (it used to be but is
no longer). The encoding for this instruction is completely reworked.
The encoding for Zir.Inst.Func is also changed slightly - when the
return type body length is 1, then only a Zir.Inst.Ref is provided; not
a full body.
linksection() and addrspace() are now communicated via func_fancy ZIR
instruction rather than as part of the corresponding decl. This allows
their expressions to observe comptime parameters.