An embedded manifest file is really just XML data embedded as a RT_MANIFEST resource (ID = 24). Typically, the Windows-only 'Manifest Tool' (`mt.exe`) is used to embed manifest files, and `mt.exe` also seems to perform some transformation of the manifest data before embedding, but in testing it doesn't seem like the transformations are necessary to get the intended result.
So, to handle embedding manifest files, Zig now takes the following approach:
- Generate a .rc file with the contents `1 24 "path-to-manifest.manifest"`
- Compile that generated .rc file into a .res file
- Link the .res file into the final binary
This effectively achieves the same thing as `mt.exe` minus the validation/transformations of the XML data that it performs.
How this is used:
On the command line:
```
zig build-exe main.zig main.manifest
```
(on the command line, specifying a .manifest file when the target object format is not COFF is an error)
or in build.zig:
```
const exe = b.addExecutable(.{
.name = "manifest-test",
.root_source_file = .{ .path = "main.zig" },
.target = target,
.optimize = optimize,
.win32_manifest = .{ .path = "main.manifest" },
});
```
(in build.zig, the manifest file is ignored if the target object format is not COFF)
Note: Currently, only one manifest file can be specified per compilation. This is because the ID of the manifest resource is currently always 1. Specifying multiple manifests could be supported if a way for the user to specify an ID for each manifest is added (manifest IDs must be a u16).
Closes#17406
options
* add Module instances for each package's build.zig and attach it to the
dependencies.zig module with the hash digest hex string as the name.
* fix incorrectly skipping the wrong packages for creating
dependencies.zig
* a couple more renaming of "package" to "module"
* start renaming "package" to "module" (see #14307)
- build system gains `main_mod_path` and `main_pkg_path` is still
there but it is deprecated.
* eliminate the object-oriented memory management style of what was
previously `*Package`. Now it is `*Package.Module` and all pointers
point to externally managed memory.
* fixes to get the new Fetch.zig code working. The previous commit was
work-in-progress. There are still two commented out code paths, the
one that leads to `Compilation.create` and the one for `zig build`
that fetches the entire dependency tree and creates the required
modules for the build runner.
Until now, we would pass `candidate: NativeTargetInfo` which creates
a copy of the `NativeTargetInfo.DynamicLinker` buffer. We would then
return this buffer in `bad_dl: []const u8` which would goes out-of-scope
the moment we leave this function frame yielding garbage. To fix this,
we just need to remember to pass by const-pointer
`candidate: *const NativeTargetInfo`.
The include directories used when preprocessing .rc files are now separate from the target, and by default will use the system MSVC include paths if the MSVC + Windows SDK are present, otherwise it will fall back to the MinGW includes distributed with Zig. This default behavior can be overridden by the `-rcincludes` option (possible values: any (the default), msvc, gnu, or none).
This behavior is useful because Windows resource files may `#include` files that only exist with in the MSVC include dirs (e.g. in `<MSVC install directory>/atlmfc/include` which can contain other .rc files, images, icons, cursors, etc). So, by defaulting to the `any` behavior (MSVC if present, MinGW fallback), users will by default get behavior that is most-likely-to-work.
It also should be okay that the include directories used when compiling .rc files differ from the include directories used when compiling the main binary, since the .res format is not dependent on anything ABI-related. The only relevant differences would be things like `#define` constants being different values in the MinGW headers vs the MSVC headers, but any such differences would likely be a MinGW bug.
The new `@depedencies` module contains generated code like the
following (where strings like "abc123" represent hashes):
```zig
pub const root_deps = [_]struct { []const u8, []const u8 }{
.{ "foo", "abc123" },
};
pub const packages = struct {
pub const abc123 = struct {
pub const build_root = "/home/mlugg/.cache/zig/blah/abc123";
pub const build_zig = @import("abc123");
pub const deps = [_]struct { []const u8, []const u8 }{
.{ "bar", "abc123" },
.{ "name", "ghi789" },
};
};
};
```
Each package contains a build root string, the build.zig import, and a
mapping from dependency names to package hashes. There is also such a
mapping for the root package dependencies.
In theory, we could now remove the `dep_prefix` field from `std.Build`,
since its main purpose is now handled differently. I believe this is a
desirable goal, as it doesn't really make sense to assign a single FQN
to any package (because it may appear in many different places in the
package hierarchy). This commit does not remove that field, as it's used
non-trivially in a few places in the build runner and compiler tests:
this will be a future enhancement.
Resolves: #16354Resolves: #17135
The main motivation for this change is eliminating the `block_ptr`
result location and corresponding `store_to_block_ptr` ZIR instruction.
This is achieved through a simple pass over the AST before AstGen which
determines, for AST nodes which have a choice on whether to provide a
result location, which choice to make, based on whether the result
pointer is consumed non-trivially.
This eliminates so much logic from AstGen that we almost break even on
line count! AstGen no longer has to worry about instruction rewriting
based on whether or not a result location was consumed: it always knows
what to do ahead of time, which simplifies a *lot* of logic. This also
incidentally fixes a few random AstGen bugs related to result location
handling, leading to the changes in `test/` and `lib/std/`.
This opens the door to future RLS improvements by making them much
easier to implement correctly, and fixes many bugs. Most ZIR is made
more compact after this commit, mainly due to not having redundant
`store_to_block_ptr` instructions lying around, but also due to a few
bugs in the old system which are implicitly fixed here.
This makes Cache.findPrefix/findPrefixResolved use `std.fs.path.relative` instead of `std.mem.startsWith` when checking if a file is within a prefix. This fixes multiple edge cases around prefix detection:
- If a prefix path ended with a path separator, then the first character of the 'sub_path' would get cut off because the previous implementation assumed it was a path separator. Example: prefix: `/foo/`, file_path: `/foo/abc.txt` would see that they both start with `/foo/` and then slice starting from one byte past the common prefix, ending up with `bc.txt` instead of the expected `abc.txt`
- If a prefix contained double path separators after any component, then the `startsWith` check would erroneously fail. Example: prefix: `/foo//bar`, file_path: `/foo/bar/abc.txt` would not see that abc.txt is a sub path of the prefix `/foo//bar`
- On Windows, case insensitivity was not respected at all, instead the UTF-8 bytes were compared directly
This fixes all of the things in the above list (and possibly more).
Prior to this change, we would unconditionally emit any system include path/framework
path as `-iwithsysroot`/`-iframeworkwithsysroot` if the sysroot was
set which can lead to unexpected build failures. Now, calls to
`b.addSystemIncludePath` and `b.addFrameworkPath` will always emit
search paths as `-isystem`/`-iframework`. As a result, it is now up to
the user to correctly concat the search paths with the sysroot when
and where desired.
If there is a need for emitting `-iwithsysroot`/`-iframeworkwithsysroot`
I would advise adding explicit hooks such as `addSystemIncludePathWithSysroot`
and `addFrameworkPathWithSysroot`.
Without duping, users could get some unexpected behavior if they used a
string with a lifetime that didn't persist throughout the full build,
i.e. if it wasn't heap allocated, or if it was explicitly freed.