SrcFn represents the function in the linked output file, if the
`Decl` is a function. This is stored here and not in `Fn` because `Decl`
survives across updates but `Fn` does not.
TODO Look into making `Fn` a longer lived structure and moving this field there
to save on memory usage.
Empirically, debug info consumers do not respect this field, or otherwise
consider it to be an error when it does not point exactly to the end of the header.
Therefore we rely on the NOP jump at the beginning of the Line Number Program for
padding rather than this field.
llvm-dwarfdump says the line number data is fine; gdb and
binutils-readelf crap out.
Supports writing the first function. Still TODO is:
* handling the .debug_line header growing too large
* adding a new file to an existing compilation
* adding an additional function to an existing file
* handling incremental updates
* adding the main IR debug ops for IR instructions
There are also issues to work out:
* readelf --debug-dump=rawline is saying there is no .debug_str section
even though there is
* readelf --debug-dump=decodedline is saying the file index 0 is bad
and reporting some other kind of corruption.
* the .debug_line header is written properly
* link.File.Elf gains:
- SrcFn, which is now a field in Module.Fn
- SrcFile, which is now a field in Module.Scope.File
* link.File.Elf gets a whole *Package field rather than only
root_src_dir_path.
* the fields first_dbg_line_file and last_dbg_line_file tell where the
Line Number Program begins and ends, which alows moving files when
the header gets too big, and allows appending files to the end.
* codegen is passed a buffer for emitting .debug_line
Line Number Program opcodes for functions.
See #5963
There is some work-in-progress code here, but I need to go make some
experimental changes to changing how to represent source locations and I
want to do that in a separate commit.
* `optimize_mode` is passed to `link.File` and stored there
* improve the debugging function `Module.dumpInst`
* get rid of `Value.the_one_possible_value` in favor of a few more
specific values for different types. This is less buggy, one less
footgun.
* `Type.onePossibleValue` now returns a `?Value` instead of `bool`.
* codegen handles undefined values. `undef` is a new `MCValue` tag.
It uses 0xaa values depending on optimization mode. However
optimization mode does not yet support scope overrides.
* link.zig: move the `Options` field from `File.Elf` and `File.C` to
the base struct.
- fix the Tag enum to adhere to style conventions
* ZIR now supports emitting undefined values.
* Fix the logic of comptime math to properly compare against zero using
the `compareWithZero` function.
* AST: flatten ControlFlowExpression into Continue, Break, and Return.
* AST: unify identifiers and literals into the same AST type: OneToken
* AST: ControlFlowExpression uses TrailerFlags to optimize storage
space.
* astgen: support `var` as well as `const` locals, and support
explicitly typed locals. Corresponding Module and codegen code is not
implemented yet.
* astgen: support result locations.
* ZIR: add the following instructions (see the corresponding doc
comments for explanations of semantics):
- alloc
- alloc_inferred
- bitcast_result_ptr
- coerce_result_block_ptr
- coerce_result_ptr
- coerce_to_ptr_elem
- ensure_result_used
- ensure_result_non_error
- ret_ptr
- ret_type
- store
- param_type
* the skeleton structure for result locations is set up. It's looking
pretty clean so far.
* add compile error for unused result and compile error for discarding
errors.
* astgen: split builtin calls up to implemented manually, and implement
`@as`, `@bitCast` (and others) with respect to result locations.
* add CLI support for hex and raw object formats. They are not
supported by the self-hosted compiler yet, and emit errors.
* rename `--c` CLI to `-ofmt=[objectformat]` which can be any of the
object formats. Only ELF and C are supported so far. Also added missing
help to the help text.
* Remove hard tabs from C backend test cases. Shame on you Noam, you
are grounded, you should know better, etc. Bad boy.
* Delete C backend code and test case that relied on comptime_int
incorrectly making it all the way to codegen.
I'm allowing incremental compilation of ZIR modules to be broken. This
is not a real use case of ZIR, and the feature requires a lot of code
duplication with incremental compilation of Zig AST (which works great).
* Take advantage of coercing anonymous struct literals to struct types.
* Reworks Module to favor Zig source as the primary use case.
Breaks ZIR compilation, which will have to be restored in a future commit.
* Decl uses src_index rather then src, pointing to an AST Decl node
index, or ZIR Module Decl index, rather than a byte offset.
* ZIR instructions have an `analyzed_inst` field instead of Module
having a hash table.
* Module.Fn loses the `fn_type` field since it is redundant with
its `owner_decl` `TypedValue` type.
* Implement Type and Value copying. A ZIR Const instruction's TypedValue
is copied to the Decl arena during analysis, which allows freeing the
ZIR text instructions post-analysis.
* Don't flush the ELF file if there are compilation errors.
* Function return types allow arbitrarily complex expressions.
* AST->ZIR for function calls and return statements.
* Deleted decls are deleted; unused decls are also detected as deleted.
Cycles are not yet detected.
* Re-analysis is smarter and will not cause a re-analysis of dependants
when only a function body is changed.
The binary file abstraction changed its struct named "Decl" to
"TextBlock" and it now represents an allocated slice of memory in
the .text section. It has two new fields: prev and next, making it
a linked list node. This allows a TextBlock to find its neighbors.
The ElfFile struct now has free_list and last_text_block fields.
Doc comments for free_list are reproduced here:
A list of text blocks that have surplus capacity. This list can have false
positives, as functions grow and shrink over time, only sometimes being added
or removed from the freelist.
A text block has surplus capacity when its overcapacity value is greater than
minimum_text_block_size * alloc_num / alloc_den. That is, when it has so
much extra capacity, that we could fit a small new symbol in it, itself with
ideal_capacity or more.
Ideal capacity is defined by size * alloc_num / alloc_den.
Overcapacity is measured by actual_capacity - ideal_capacity. Note that
overcapacity can be negative. A simple way to have negative overcapacity is to
allocate a fresh text block, which will have ideal capacity, and then grow it
by 1 byte. It will then have -1 overcapacity.
The last_text_block keeps track of the end of the .text section.
Allocation, freeing, and resizing decls are all now more sophisticated,
and participate in the virtual address allocation scheme. There is no
longer the possibility for virtual address collisions.
However there does not appear to be an x86 encoding for calling an
immediate address. So there's no point of setting this up. We should
just emit an indirect call to the got addr.