Instead use the standarized option for communicating the
zig compiler backend at comptime, which is `zig_backend`. This was
introduced in commit 1c24ef0d0b09a12a1fe98056f2fc04de78a82df3.
This exposes a function from stage2 to stage1 to append symbols to automatically export them.
This happends under the following conditions:
- Target is wasm
- User has not provided --export/--rdynamic flags themselves.
Small packed structs weren't included in this resolution so their
c_abi_type would be NULL when attempting usage later, leading to a
compiler crash.
Resolves#10431.
This saves on comptime format string parsing, as the compiler caches
comptime calls. The catch here, is that parsePlaceHolder cannot take the
placeholder string as a slice. It must take it as an array by value for
the caching to occure.
There is also some logic in here that ensures that the specifier_arg is
always them same slice when the items they contain are the same. This
makes the compiler stamp out less copies of formatType.
Make `@returnAddress()` return for the BPF target, as the BPF target for
the time being does not support probing for the return address. Stack
traces for the general purpose allocator for the BPF target is also set
to not be captured.
The previous commit (38b2d6209239f0dad7cb38e656d9d38506f126ca) regressed
the compile error test case for when doing saturating shift left of a
comptime-known negative RHS.
This commit additionally fixes the error for regular shifts in addition
to saturating shifts.
Saturating shift left (`<<|`) previously used the `ir_analyze_bin_op_math`
codepath rather than the `ir_analyze_bit_shift` codepath, leading to it
doing peer type resolution (incorrect) instead of using the LHS type as
the number of bits to do the saturating against.
This required implementing SIMD vector support for `@truncate`.
Additionall, this commit adds a compile error for saturating shift left
on a comptime_int.
stage2 does not pass these new behavior tests yet.
closes#10298
The target abi can also be set in build.zig via LibExeObjStep.target_abi
The value passed in is checked that it is a valid value in
std.Target.TargetAbi
The target abi is also validated against the target cpu
* stage1: change the `@typeName` of `@TypeOf(undefined)`,
`@TypeOf(null)`, and `@TypeOf(.foo)` to match stage2.
* move passing behavior tests to the passing-for-stage2 section.
After extern enums were removed, stage1 was left in an incorrect state
of checking for `extern enum` for exported enums. This commit fixes it
to look for an explicit integer tag type instead, and adds test coverage
for the compile error case as well as the success case.
closes#9498
This is mainly because arm64 macOS doesn't support all
versions supported by x86_64 macOS. This is just a temporary
thing until both architectures support the same set of OSes.
GetCurrentDirectory returns a path with a trailing slash iff the cwd is
a root directory, making the code in `resolveWindows` return an invalid
path with two consecutive slashes.
Closes#10093
According to the documentation, `divTrunc` is "Truncated division.
Rounds toward zero". Lower it as a straightforward fdiv + trunc sequence
to make it behave as expected with mixed positive/negative operands.
Closes#10001
* saturating shl - check for negative rhs at comptime
- adds expected compile_errors case for negative rhs
* add expected compile error for sat shl assign
* move fmaq from freestanding libc to compiler_rt, unconditionally
exported weak_odr.
* stage1: add fmaf, fmal, fmaq as symbols that compiler-rt might
generate calls to.
* stage1: lower `@mulAdd` directly to a call to `fmaq` instead of to
the LLVM intrinsic because LLVM will lower it to `fmal` even when the
target's `long double` is not equivalent to `f128`.
This commit is intended to fix the test suite which is failing on the
previous commit.
* Remove the builtins `@addWithSaturation`, `@subWithSaturation`,
`@mulWithSaturation`, and `@shlWithSaturation` now that we have
first-class syntax for saturating arithmetic.
* langref: Clarify the behavior of `@shlExact`.
* Ast: rename `bit_shift_left` to `shl` and `bit_shift_right` to `shr`
for consistency.
* Air: rename to include underscore separator with consistency with
the rest of the ops.
* Air: add shl_exact instruction
* Use non-extended tags for saturating arithmetic, to keep it
simple so that all the arithmetic operations can be done the same
way.
- Sema: unify analyzeArithmetic with analyzeSatArithmetic
- implement comptime `+|`, `-|`, and `*|`
- allow float operands to saturating arithmetic
* `<<|` allows any integer type for the RHS.
* C backend: fix rebase conflicts
* LLVM backend: reduce the amount of branching for arithmetic ops
* zig.h: fix magic number not matching actual size of C integer types
- adds initial support for the operators +|, -|, *|, <<|, +|=, -|=, *|=, <<|=
- uses operators in addition to builtins in behavior test
- adds binOpExt() and assignBinOpExt() to AstGen.zig. these need to be audited
Introduce an explicit decl_map for *Decl to LLVMValueRef. Doc comment
reproduced here:
Ideally we would use `llvm_module.getNamedFunction` to go from *Decl to
LLVM function, but that has some downsides:
* we have to compute the fully qualified name every time we want to do the lookup
* for externally linked functions, the name is not fully qualified, but when
a Decl goes from exported to not exported and vice-versa, we would use the wrong
version of the name and incorrectly get function not found in the llvm module.
* it works for functions not all globals.
Therefore, this table keeps track of the mapping.
Non-exported functions now use fully-qualified symbol names.
`Module.Decl.getFullyQualifiedName` now returns a sentinel-terminated
slice which is useful to pass to LLVMAddFunction.
Instead of using aliases for all external symbols, now the LLVM backend
takes advantage of LLVMSetValueName to rename functions that become
exported. Aliases are still used for the second and remaining exports.
freeDecl is now handled properly in the LLVM backend, deleting the
LLVMValueRef corresponding to the Decl being deleted. The linker
backends for ELF, COFF, Mach-O, and Wasm had to be updated to forward
the freeDecl call to the LLVM backend.
* prepare compiler-rt to support being compiled by stage2
- put in a few minor workarounds that will be removed later, such as
using `builtin.stage2_arch` rather than `builtin.cpu.arch`.
- only try to export a few symbols for now - we'll move more symbols
over to the "working in stage2" section as they become functional
and gain test coverage.
- use `inline fn` at function declarations rather than `@call` with an
always_inline modifier at the callsites, to avoid depending on the
anonymous array literal syntax language feature (for now).
* AIR: replace floatcast instruction with fptrunc and fpext for
shortening and widening floating point values, respectively.
* Introduce a new ZIR instruction, `export_value`, which implements
`@export` for the case when the thing to be exported is a local
comptime value that points to a function.
- AstGen: fix `@export` not properly reporting ambiguous decl
references.
* Sema: handle ExportOptions linkage. The value is now available to all
backends.
- Implement setting global linkage as appropriate in the LLVM
backend. I did not yet inspect the LLVM IR, so this still needs to
be audited. There is already a pending task to make sure the alias
stuff is working as intended, and this is related.
- Sema almost handles section, just a tiny bit more code is needed in
`resolveExportOptions`.
* Sema: implement float widening and shortening for both `@floatCast`
and float coercion.
- Implement the LLVM backend code for this as well.
This is a property which solely belongs to pointers to functions,
not to the functions themselves. This cannot be properly represented by
stage 2 at the moment, as type with zigTypeTag() == .Fn is overloaded for
for function pointers and function prototypes.
Conflicts:
* cmake/Findclang.cmake
* cmake/Findlld.cmake
* cmake/Findllvm.cmake
In master branch, more search paths were added to these files with "12"
in the path. In this commit I updated them to "13".
* src/stage1/codegen.cpp
* src/zig_llvm.cpp
* src/zig_llvm.h
In master branch, ZigLLVMBuildCmpXchg is improved to add
`is_single_threaded`. However, the LLVM 13 C API has this already, and
in the llvm13 branch, ZigLLVMBuildCmpXchg is deleted in favor of the C
API. In this commit I updated stage2 to use the LLVM 13 C API rather
than depending on an improved ZigLLVMBuildCmpXchg.
Additionally, src/target.zig largestAtomicBits needed to be updated to
include the new m68k ISA.
* Implement Sema for `@cmpxchgWeak` and `@cmpxchgStrong`. Both runtime
and comptime codepaths are implement.
* Implement Codegen for LLVM backend and C backend.
* Add LazySrcLoc.node_offset_builtin_call_argX 3...5
* Sema: rework comptime control flow.
- `error.ComptimeReturn` is used to signal that a comptime function
call has returned a result (stored in the Inlining struct).
`analyzeCall` notices this and handles the result.
- The ZIR instructions `break_inline`, `block_inline`,
`condbr_inline` are now redundant and can be deleted. `break`,
`block`, and `condbr` function equivalently inside a comptime scope.
- The ZIR instructions `loop` and `repeat` also are modified to
directly perform comptime control flow inside a comptime scope,
skipping an unnecessary mechanism for analysis of runtime code.
This makes Zig perform closer to an interpreter when evaluating
comptime code.
* Sema: zirRetErrValue looks at Sema.ret_fn_ty rather than sema.func
for adding to the inferred error set. This fixes a bug for
inlined/comptime function calls.
* Implement ZIR printing for cmpxchg.
* stage1: make cmpxchg respect --single-threaded
- Our LLVM C++ API wrapper failed to expose this boolean flag before.
* Fix AIR printing for struct fields showing incorrect liveness data.
- adds 1 simple behavior tests for each
which does integer and vector ops at
runtime and comptime
- adds bigint_*_sat() methods for each
- use CreateIntrinsic() which accepts a
variable number of arguments to pass
the scale parameter
* update langref
- added case to test/compile_errors.zig given floats
- explain upstream bug in llvm.smul.fix.sat and link to #9643 in langref and commented out test cases
* sat-arithmetic: skip mul tests if arch == .wasm32 because ci is erroring with 'LLVM ERROR: Unable to expand fixed point multiplication' when compiling for wasm32
Conflicts:
lib/libcxx/include/__config
d57c0cc3bfeff9af297279759ec2b631e6d95140 added support for DragonFlyBSD
to libc++ by updating some ifdefs. This needed to be synced with llvm13.
* stage2 AstGen: add missing compile error for declaring a local
that shadows a primitive. Even with `@""` syntax, it may not have
the same name as a primitive.
* stage2 AstGen: add a compile error for a global declaration
whose name matches a primitive. However it is allowed when using
`@""` syntax.
* stage1: delete all "declaration shadows primitive" compile errors
because they are now handled by stage2 AstGen.
* stage1/stage2 AstGen: notice when using `@""` syntax and:
- treat `_` as a regular identifier
- skip checking if an identifire is a primitive
Check the new test cases for clarifications on semantics.
closes#6062
Locals are not allowed to shadow declarations, but declarations are
allowed to shadow each other, as long as there are no ambiguous
references.
closes#678
This is a backwards-compatible language change.
Previously, `@intToEnum` coerced its integer operand to the integer tag
type of the destination enum type, often requiring the callsite to
additionally wrap the operand in an `@intCast`. Now, the `@intCast` is
implicit, and any integer operand can be passed to `@intToEnum`.
The same as before, it is illegal behavior to pass any integer which does
not have a corresponding enum tag.