This makes a few changes to the base64 codecs.
* The padding character is optional. The common "URL-safe" variant, in
particular, is generally not used with padding. This is also the case for
password hashes, so having this will avoid code duplication with bcrypt,
scrypt and other functions.
* The URL-safe variant is added. Instead of having individual constants
for each parameter of each variant, we are now grouping these in a
struct. So, `standard_pad_char` just becomes `standard.pad_char`.
* Types are not `snake_case`'d any more. So, `standard_encoder` becomes
`standard.Encoder`, as it is a type.
* Creating a decoder with ignored characters required the alphabet and
padding. Now, `standard.decoderWithIgnore(<ignored chars>)` returns a
decoder with the standard parameters and the set of ignored chars.
* Whatever applies to `standard.*` obviously also works with `url_safe.*`
* the `calcSize()` interface was inconsistent, taking a length in the
encoder, and a slice in the encoder. Rename the variant that takes a
slice to `calcSizeForSlice()`.
* In the decoder with ignored characters, add `calcSizeUpperBound()`,
which is more useful than the one that takes a slice in order to size
a fixed buffer before we have the data.
* Return `error.InvalidCharacter` when the input actually contains
characters that are neither padding nor part of the alphabet. If we
hit a padding issue (which includes extra bits at the end),
consistently return `error.InvalidPadding`.
* Don't keep the `char_in_alphabet` array permanently in a decoder;
it is only required for sanity checks during initialization.
* Tests are unchanged, but now cover both the standard (padded) and
the url-safe (non-padded) variants.
* Add an error set, rename `OutputTooSmallError` to `NoSpaceLeft`
to match the `hex2bin` equivalent.
std.crypto.random
* cross platform, even freestanding
* can't fail. on initialization for some systems requires calling
os.getrandom(), in which case there are rare but theoretically
possible errors. The code panics in these cases, however the
application may choose to override the default seed function and then
handle the failure another way.
* thread-safe
* supports the full Random interface
* cryptographically secure
* no syscall required to initialize on Linux (AT_RANDOM)
* calls arc4random on systems that support it
`std.crypto.randomBytes` is removed in favor of `std.crypto.random.bytes`.
I moved some of the Random implementations into their own files in the
interest of organization.
stage2 no longer requires passing a RNG; instead it uses this API.
Closes#6704
`std.GeneralPurposeAllocator` is now available. It is a function that
takes a configuration struct (with default field values) and returns an
allocator. There is a detailed description of this allocator in the
doc comments at the top of the new file.
The main feature of this allocator is that it is *safe*. It
prevents double-free, use-after-free, and detects leaks.
Some deprecation compile errors are removed.
The Allocator interface gains `old_align` as a new parameter to
`resizeFn`. This is useful to quickly look up allocations.
`std.heap.page_allocator` is improved to use mmap address hints to avoid
obtaining the same virtual address pages when unmapping and mapping
pages. The new general purpose allocator uses the page allocator as its
backing allocator by default.
`std.testing.allocator` is replaced with usage of this new allocator,
which does leak checking, and so the LeakCheckAllocator is retired.
stage1 is improved so that the `@typeInfo` of a pointer has a lazy value
for the alignment of the child type, to avoid false dependency loops
when dealing with pointers to async function frames.
The `std.mem.Allocator` interface is refactored to be in its own file.
`std.Mutex` now exposes the dummy mutex with `std.Mutex.Dummy`.
This allocator is great for debug mode, however it needs some work to
have better performance in release modes. The next step will be setting
up a series of tests in ziglang/gotta-go-fast and then making
improvements to the implementation.
This commit generalizes `std.fs.wasi.PreopenList.find(...)` allowing
search by `std.fs.wasi.PreopenType` union type rather than by dir
name. In the future releases of WASI, it is expected to have more
preopen types (or capabilities) than just directories. This commit
aligns itself with that vision.
This is a potentially breaking change. However, since `std.fs.wasi.PreopenList`
wasn't made part of any Zig release yet, I think we should be OK
to introduce those changes without pointing to any deprecations.
This rather large commit adds/fixes missing WASI functionality
in `libstd` needed to pass the `libstd` tests. As such, now by
default tests targeting `wasm32-wasi` target are enabled in
`test/tests.zig` module. However, they can be disabled by passing
the `-Dskip-wasi=true` flag when invoking the `zig build test`
command. When the flag is set to `false`, i.e., when WASI tests are
included, `wasmtime` with `--dir=.` is used as the default testing
command.
Since the majority of `libstd` tests were relying on `fs.cwd()`
call to get current working directory handle wrapped in `Dir`
struct, in order to make the tests WASI-friendly, `fs.cwd()`
call was replaced with `testing.getTestDir()` function which
resolved to either `fs.cwd()` for non-WASI targets, or tries to
fetch the preopen list from the WASI runtime and extract a
preopen for '.' path.
The summary of changes introduced by this commit:
* implement `Dir.makeDir` and `Dir.openDir` targeting WASI
* implement `Dir.deleteFile` and `Dir.deleteDir` targeting WASI
* fix `os.close` and map errors in `unlinkat`
* move WASI-specific `mkdirat` and `unlinkat` from `std.fs.wasi`
to `std.os` module
* implement `lseek_{SET, CUR, END}` targeting WASI
* implement `futimens` targeting WASI
* implement `ftruncate` targeting WASI
* implement `readv`, `writev`, `pread{v}`, `pwrite{v}` targeting WASI
* make sure ANSI escape codes are _not_ used in stderr or stdout
in WASI, as WASI always sanitizes stderr, and sanitizes stdout if
fd is a TTY
* fix specifying WASI rights when opening/creating files/dirs
* tweak `AtomicFile` to be WASI-compatible
* implement `os.renameatWasi` for WASI-compliant `os.renameat` function
* implement sleep() targeting WASI
* fix `process.getEnvMap` targeting WASI
Now there are 3 types:
* std.math.big.int.Const
- the memory is immutable, only stores limbs and is_positive
- all methods operating on constant data go here
* std.math.big.int.Mutable
- the memory is mutable, stores capacity in addition to limbs and
is_positive
- methods here have some Mutable parameters and some Const
parameters. These methods expect callers to pre-calculate the
amount of resources required, and asserts that the resources are
available.
* std.math.big.int.Managed
- the memory is mutable and additionally stores an allocator.
- methods here perform the resource calculations for the programmer.
- this is the high level abstraction from before
Each of these 3 types can be converted to the other ones.
You can see the use case for this in the self-hosted compiler, where we
only store limbs, and construct the big ints as needed.
This gets rid of the hack where the allocator was optional and the
notion of "fixed" versions of the struct. Such things are now modeled
with the `big.int.Const` type.
Zig now supports a more fine-grained sense of what is native and what is
not. Some examples:
This is now allowed:
-target native
Different OS but native CPU, default Windows C ABI:
-target native-windows
This could be useful for example when running in Wine.
Different CPU but native OS, native C ABI.
-target x86_64-native -mcpu=skylake
Different C ABI but otherwise native target:
-target native-native-musl
-target native-native-gnu
Lots of breaking changes to related std lib APIs.
Calls to getOs() will need to be changed to getOsTag().
Calls to getArch() will need to be changed to getCpuArch().
Usage of Target.Cross and Target.Native need to be updated to use
CrossTarget API.
`std.build.Builder.standardTargetOptions` is changed to accept its
parameters as a struct with default values. It now has the ability to
specify a whitelist of targets allowed, as well as the default target.
Rather than two different ways of collecting the target, it's now always
a string that is validated, and prints helpful diagnostics for invalid
targets. This feature should now be actually useful, and contributions
welcome to further improve the user experience.
`std.build.LibExeObjStep.setTheTarget` is removed.
`std.build.LibExeObjStep.setTarget` is updated to take a CrossTarget
parameter.
`std.build.LibExeObjStep.setTargetGLibC` is removed. glibc versions are
handled in the CrossTarget API and can be specified with the `-target`
triple.
`std.builtin.Version` gains a `format` method.