This branch introduced std.Target.TargetAbi when we already had
std.Target.Abi which was, unsurprisingly, already suited for this task.
Also pull out the -mabi= cc flag addition to the common area instead of
duplicating it for assembly and c files.
The target abi can also be set in build.zig via LibExeObjStep.target_abi
The value passed in is checked that it is a valid value in
std.Target.TargetAbi
The target abi is also validated against the target cpu
Previously, when a coercion needed to be inserted into a break
instruction, the `br` AIR instruction would be rewritten so that the
block operand was a sub-block that did the coercion. The problem is that
the sub-block itself was never added to the parent block, resulting in
the `br` instruction operand being a bad reference.
Now, the `br` AIR instruction that needs to have coercion instructions
added is replaced with the sub-block itself with type `noreturn`, and
then the sub-block has the coercion instructions and a new `br`
instruction that breaks from the original block.
LLVM backend needed to be fixed to lower `noreturn` blocks without
emitting an unused LLVM basic block.
* Introduce a mechanism into Sema for emitting a compile error when an
integer is too big and we need it to fit into a usize.
* Add `@intCast` where necessary
* link/MachO: fix an unnecessary allocation when all that was happening
was appending zeroes to an ArrayList.
* Add `error.Overflow` as a possible error to some codepaths, allowing
usage of `math.intCast`.
closes#9710
-airLoad and airStore now properly report an error if they are used with an array, instead of having the C compiler emit a vague error
-airStoreUndefined now works with array types
-structFieldPtr now works with array types, allowing generics' tests to pass
-add additional test cases that were found to be passing
-add basic int128 test cases which previously did not pass but weren't covered
-most test cases in cast.zig now pass
-i128/u128 or smaller int constants can now be rendered
-unsigned int constants are now always suffixed with 'u' to prevent random compile errors
-pointers with a val tag of 'zero' now just emit a 0 constant which coerces to the pointer type and fixes some warnings with ordered comparisons
-pointers with a val tag of 'one' are now casted back to the pointer type
-support pointers with a u64 val
-fix bug where rendering an array's type will emit more indirection than is needed
-render uint128_t/int128_t manually when needed
-implement ptr_add/sub AIR handlers manually so they manually cast to int types which avoids UB if the result or ptr operand is NULL
-implement airPtrElemVal/Ptr
-airAlloc for arrays will not allocate a ref as the local for the array is already a reference/pointer to the array itself
-fix airPtrToInt by casting to the int type
* wasm: Move wasm's codegen to arch/wasm/CodeGen.zig
* wasm: Define Wasm's Mir
This declares the initial most-used instructions for wasm as
well as the data that represents them.
TODO: Add binary operand opcodes.
By re-using the wasm opcode values, we can emit each opcode very easily
by simply using `@enumToInt()`. However, this poses a possible problem:
If we use all of wasm's opcodes, it leaves us no room to use synthetic opcodes such as debugging instructions.
We could use reserved opcodes, but the wasm spec may use them at some point.
TODO: Check if we should perhaps use a 16bit tag where the highest bits are used for synthetic opcodes.
* wasm: Define basic Emit structure
* wasm: Implement corresponding Emit functions for MIR
* wasm: Initial lowering to MIR
- This implements lowering to MIR from AIR for storing and loading of locals
as well as emitting immediates.
- Relocating function indexes has been simplified a lot as well as we no
longer need to patch offsets and we write a relocatable value instead.
- Locals are now emitted at the beginning of the function section entry
meaning all offsets we generate are stable.
* wasm: Lower all AIR instructions to MIR
* wasm: Implement remaining MIR instructions
* wasm: Fix function relocations
* wasm: Get all tests working
* wasm: Make `Data` 4 bytes instead of 8.
- 64bit immediates are now stored in 2 seperate u32's.
- 64bit floats are now stored in 2 seperate u32's.
- `mem_arg` is now stored as a seperate payload in extra.
This commit makes airStore() handle undefined values directly instead of
delegating to renderValue(): the call to renderValue() happens too late,
when "dest = " has already been written to the stream, at which point
there's no sane way to initialize e.g. struct values by assignment.
Instead, we make airStore() use memset(dest, 0xaa, sizeof(dest)), which
should transparently handle all types.
Also moves the newly-passing tests to the top of test/behavior.zig.
1. Changed Zig pointers to functions to be typedef'd so then we can
treat them the same as other types.
2. Distinguished between const slices (zig_L prefix) and mut slices
(zig_M prefix).
3. Changed lowering of Zig "const pointers" (e.g. *const u8) to to C
"pointers to const" (e.g. const char *) rather than C "const
pointers" (e.g. char * const)
4. Ensured that all typedefs are "linked" even if the decl doesn't
require any forward declarations
5. Added test that exercises function pointer type rendering
6. Changed .slice_ptr instruction to allocate pointer local rather than
a uintptr_t local
New AIR instruction: `optional_payload_ptr_set`
It's like `optional_payload_ptr` except it sets the non-null bit.
When storing to the payload via a result location that is an optional,
`optional_payload_ptr_set` is now emitted. There is a new algorithm in
`zirCoerceResultPtr` which stores a dummy value through the result
pointer into a temporary block, and then pops off the AIR instructions
from the temporary block in order to determine how to transform the
result location pointer in case any in-between coercions need to happen.
Fixes a couple of behavior tests regarding optionals.
1. Function signatures that return a no member struct return void
2. Undefined var decls don't get a value generated for them
3. Don't generate bitcast code if the result isn't used, since
bitcast is a pure function. Right now struct handling code
generates some weird unused bitcast AIR, and this optimization
side steps that issue.
Because ArrayList.initCapacity uses 'precise' capacity allocation, this should save memory on average, and definitely will save memory in cases where ArrayList is used where a regular allocated slice could have also be used.
If these functions are called more than once, then the array list would no longer be guaranteed to have enough capacity during the appendAssumeCapacity calls. With ensureUnusedCapacity, they will always be guaranteed to have enough capacity regardless of how many times the function is called.
* test_functions: properly add dependencies of the array on test
functions and test names so that the order comes out correctly.
* fix lowering of struct literals to add parentheses around the type
name.
* omit const qualifier in slices because otherwise slices cannot be
reassigned even when they are local variables.
* special case pointer to functions and double pointer to functions in
renderTypeAndName. This code will need to be cleaned up but for now
it helps us make progress on other C backend stuff.
* fix slice element access to lower to `.ptr[` instead of `[`.
* airSliceElemVal: respect volatile slices
The main problem that motivated these changes is that global constants
which are referenced by pointer would not be emitted into the binary.
This happened because `semaDecl` did not add `codegen_decl` tasks for
global constants, instead relying on the constant values being copied as
necessary. However when the global constants are referenced by pointer,
they need to be sent to the linker to be emitted.
After making global const arrays, structs, and unions get emitted, this
uncovered a latent issue: the anonymous decls that they referenced would
get garbage collected (via `deleteUnusedDecl`) even though they would
later be referenced by the global const.
In order to solve this problem, I introduced `anon_work_queue` which is
the same as `work_queue` except a lower priority. The `codegen_decl`
task for anon decls goes into the `anon_work_queue` ensuring that the
owner decl gets a chance to mark its anon decls as alive before they are
possibly deleted.
This caused a few regressions, which I made the judgement call to add
workarounds for. Two steps forward, one step back, is still progress.
The regressions were:
* Two behavior tests having to do with unions. These tests were
intentionally exercising the LLVM constant value lowering, however,
due to the bug with garbage collection that was fixed in this commit,
the LLVM code was not getting exercised, and union types/values were
not implemented correctly, due to me forgetting that LLVM does not
allow bitcasting aggregate values.
- This is worked around by allowing those 2 test cases to regress,
moving them to the "passing for stage1 only" section.
* The test-stage2 test cases (in test/cases/*) for non-LLVM backends
previously did not have any calls to lower struct values, but now
they do. The code that was there was just `@panic("TODO")`. I
replaced that code with a stub that generates the wrong value. This
is an intentional miscompilation that will obviously need to get
fixed before any struct behavior tests pass. None of the current
tests we have exercise loading any values from these global const
structs, so there is not a problem until we try to improve these
backends.
* C pointer types always have allowzero set to true but they omit the
word allowzero when printed.
* Implement coercion from C pointers to other pointers.
* Implement in-memory coercion for slices and pointer-like optionals.
* Make slicing a C pointer drop the allowzero bit.
* Value representation for pointer-like optionals is now allowed to use
pointer tag values in addition to the `opt_payload` tag.
According to the documentation, `divTrunc` is "Truncated division.
Rounds toward zero". Lower it as a straightforward fdiv + trunc sequence
to make it behave as expected with mixed positive/negative operands.
Closes#10001