zir.Inst no longer has an `analyzed_inst` field. This is previously how
we mapped ZIR to their TZIR counterparts, however with the way inline
and comptime function calls work, we can potentially have the same ZIR
structure being analyzed by multiple different analyses, such as during
a recursive inline function call. This would cause the `analyzed_inst`
field to become clobbered. So instead, we use a table to map the
instructions to their semantically analyzed counterparts. This will help
with multi-threaded compilation as well.
Scope.Block.Inlining is split into 2 different layers of "sharedness".
The first layer is shared by the whole inline/comptime function call
stack. It contains the callsite where something is being inlined and the
branch count/quota. The second layer is different per function call but
shared by all the blocks within the function being inlined.
Add support for debug dumping br and brvoid TZIR instructions.
Remove the "unreachable code" error. It was happening even for this case:
```zig
if (comptime_condition) return;
bar(); // error: unreachable code
```
We will need smarter logic for when it is legal to emit this compile
error.
Remove the ZIR test cases. These are redundant with other higher level
Zig source tests we have, and maintaining support for ZIRModule as a
first-class top level abstraction is getting in the way of clean
compiler design for the main use case. We will have ZIR/TZIR based test
cases someday to help with testing optimization passes and ZIR to TZIR
analysis, but as is, these test cases are not accomplishing that, and
they are getting in the way.
* scopes properly inherit inlining information
* compile errors of inline function calls are properly attached to the
caller rather than the callee.
- added a test case for this
* --watch still opens a repl if compile errors happen.
Instead of freeing ZIR after semantic analysis, we keep it around so
that it can be used for comptime calls, inline calls, and generic
function calls. ZIR memory is now managed by the Decl arena.
Debug dump() functions are conditionally compiled; only available in
Debug builds of the compiler.
Add a test for an inline function call.
* remove the -Ddump-zir thing. that's handled through --verbose-ir
* rework Fn to have an is_inline flag without requiring any more memory
on the heap per function.
* implement a rough first version of dumping typed zir (tzir) which is
a lot more helpful for debugging than what we had before. We don't
have a way to parse it though.
* keep track of whether the inline-ness of a function changes because
if it does we have to go update callsites.
* add compile error for inline and export used together.
inline function calls and comptime function calls are implemented the
same way. A block instruction is set up to capture the result, and then
a scope is set up that has a flag for is_comptime and some state if the
scope is being inlined.
when analyzing `ret` instructions, zig looks for inlining state in the
scope, and if found, treats `ret` as a `break` instruction instead, with
the target block being the one set up at the inline callsite.
Follow-up items:
* Complete out the debug TZIR dumping code.
* Don't redundantly generate ZIR for each inline/comptime function
call. Instead we should add a new state enum tag to Fn.
* comptime and inlining branch quotas.
* Add more test cases.
* Function calls that happen in a comptime scope get called at
compile-time. We do this by putting the parameters in place as
constant values and then running regular function analysis on the
body.
* Added `Scope.Block.dump()` for debugging purposes.
* Fixed some code to call `identifierTokenString` rather than
`tokenSlice`, making it work for `@""` syntax.
* Implemented `Value.copy` for big integers.
Follow-up issues to tackle:
* Adding compile errors to the callsite instead of the callee Decl.
* Proper error notes for "called from here".
- Related: #7555
* Branch quotas.
* ZIR support?
The reason this is required is for two reasons: 1) the libc
targeting `aarch64` macOS is slightly newer than that targeting
`x86_64`, and 2) `OSAtomic.h` uses relative imports rather than
system-wide imports for accompanying headers which clearly is an
oversight on Apple's part. Until such time when `libkern` headers
between `x86_64` and `aarch64` are identical, this will require a
manual intervention to duplicate the relevant headers between the
respective architectures.
This commit adds default search paths for system frameworks
on macOS while also adding `-isysroot` for OS versions at least BigSur.
Since BigSur (11.0.1), neither headers nor libs exist in standard
root locations (`/usr/include`, `/System/Library/Frameworks`). Instead, they
are now exclusively part of the installed developer toolchain (either
via XCode.app or CLT), and specifying `-isysroot` allows us to keep
using universal search paths such as `/System/Library/Frameworks` while
only changing the include flag from `-iframework` to
`-iframeworkwithsysroot`.
restore "Comply with semantic versioning pre-release format"
restore "stage2: SemVer compliance for development builds"
restore "Remove 'g' prefix from commit hash in Zig semver"
This reverts commit d96d8639e592b4bb4b2e330c4bd7412256b297d2.
This reverts commit e8810f579406673edad0c9780c9d990f3034717a.
This reverts commit 9afe5859a3e428b259a306c36a860e4d82dbb4bb.
macOS requires the debug symbols to either be part of the intermediate
object file `whatever.o` or a companion `whatever.dSym` bundle. The
former case seems ill-suited for our needs since it subscribes to
the old-fashioned compilation strategy using intermediate compilation
units; the latter is what we need however on macOS the debug symbols
unlike in Elf are not part of the final artefact; rather they sit
next to it in its own Mach-O file.