Since now the size of a c_longdouble is correctly 16 bytes,
the test is no longer passing. It was previously accidentally passing
due to incorrect sizing and it not being larger than the size
of a f64.
disable long_double test for windows
This reverts commit 8bf3e1f8d0902abd4133e2729b3625c25011c3ff, which
introduced miscompilations for peer expressions any time they needed
coercions to runtime types.
I opened #11957 as a proposal to accomplish the goal of the reverted
commit.
Closes#11898
If the hw doesn't have support for exotic floating-point types such
as `f80`, we lower the call to a compiler-rt function call instead.
I've added a behavior test specifically targeting this use case which
now passes on `aarch64-macos`.
Additionally, this commit makes it possible to successfully build
stage3 on `aarch64-macos`. We can print the compiler's help message,
however, building with it needs a little bit more love still.
According to Apple docs, the long double type is a double precision
IEEE754 binary floating-point type, which makes it identical to the
double type. This behavior contrasts to the standard specification,
in which a long double is a quad-precision, IEEE754 binary,
floating-point type.
Thus, we need to take this into account when using the compiler
intrinsics so that we select the correct function version for
FloatMulAdd.
This commit introduces a new AIR instruction `cmp_lt_errors_len`. It's
specific to this use case for two reasons:
* The total number of errors is not stable during semantic analysis; it
can only be reliably checked when flush() is called. So the backend
that is lowering the instruction must emit a relocation of some kind
and then populate it during flush().
* The fewer AIR instructions in memory, the better for compiler
performance, so we squish complex meanings into AIR tags without
hesitation.
The instruction is implemented only in the LLVM backend so far. It does
this by creating a simple function which is gutted and re-populated
with each flush().
AstGen now uses ResultLoc.coerced_ty for `@intToError` and Sema does the
coercion.
To no longer set the error code to undefined. This fixes the problem
where an undefined single-item pointer coerced to an error union of a
slice set the whole thing to undefined even though the sub-coercion to
the slice would have produced a defined value.