Namespace types (`struct`, `enum`, `union`, `opaque`) do not use
structural equality - equivalence is based on their Decl index (and soon
will change to AST node + captures). However, we previously stored all
other information in the corresponding `InternPool.Key` anyway. For
logical consistency, it makes sense to have the key only be the true key
(that is, the Decl index) and to load all other data through another
function. This introduces those functions, by the name of
`loadStructType` etc. It's a big diff, but most of it is no-brainer
changes.
In future, it might be nice to eliminate a bunch of the loaded state in
favour of accessor functions on the `LoadedXyzType` types (like how we
have `LoadedUnionType.size()`), but that can be explored at a later
date.
This commit eliminates the `dbg_block_{begin,end}` instructions from
both ZIR and AIR. Instead, lexical scoping of `dbg_var_{ptr,val}`
instructions is decided based on the AIR block they exist within. This
is a much more robust system, and also results in a huge drop in ZIR
bytes - around 7% for Sema.zig.
This required some enhancements to Sema to prevent elision of blocks
when they are required for debug variable scoping. This can be observed
by looking at the AIR for the following simple test program with and
without `-fstrip`:
```zig
export fn f() void {
{
var a: u32 = 0;
_ = &a;
}
{
var a: u32 = 0;
_ = &a;
}
}
```
When `-fstrip` is passed, no AIR blocks are generated. When `-fno-strip`
is passed, the ZIR blocks are lowered to true AIR blocks to give correct
lexical scoping to the debug vars.
The changes here incidentally reolve #19060. A corresponding behavior
test has been added.
Resolves: #19060
* make test names contain the fully qualified name
* make test filters match the fully qualified name
* allow multiple test filters, where a test is skipped if it does not
match any of the specified filters
Wrapping strange integers before an operation was initially
done as an attempt to minimize the amount of normalizations
required: This way, there would not be a normalization
necessary between two modular operations. This was a
premature optimization, since the resulting logic is more
complicated than naive way of wrapping the result after
the operation.
This commit updates handling of strange integers to do
wrapping after each operation. It also seems slightly
more efficient in terms of size of generated code, as
it reduces the size of the behavior tests binary by
about 1%.
The main goal of this commit is to remove the `runtime_value` field from
`InternPool.Key` (and its associated representation), but there are a
few dominos. Specifically, this mostly eliminates the "maybe runtime"
concept from value resolution in Sema: so some resolution functions like
`resolveMaybeUndefValAllowVariablesMaybeRuntime` are gone. This required
a small change to struct/union/array initializers, to no longer
use `runtime_value` if a field was a `variable` - I'm not convinced this
case was even reachable, as `variable` should only ever exist as the
trivial value of a global runtime `var` decl.
Now, the only case in which a `Sema.resolveMaybeUndefVal`-esque function
can return the `variable` key is `resolveMaybeUndefValAllowVariables`,
which is directly called from `Sema.resolveInstValueAllowVariables`
(previously `Sema.resolveInstValue`), which is only used for resolving
the value of a Decl from `Module.semaDecl`.
While changing these functions, I also slightly reordered and
restructured some of them, and updated their doc comments.
This reverts commit 9f0359d78f9facc38418e32b0e8c1bf6f99f0d26 in an attempt to
make the tests pass again. The CI failure from that merge should be unrelated
to this commit.
This reverts commit b822e841cda0adabe3fec260ff51c18508f7ee32, reversing
changes made to 0c99ba1eab63865592bb084feb271cd4e4b0357e.
This caused a CI failure when it landed in master branch.
Commit 5393e56500d499753dbc39704c0161b47d1e4d5c has a flaw pointed out
by @mlugg: the `ty` field of pointer values changes when comptime values
are pointer-casted. This commit introduces a new encoding which
additionally stores the "original pointer type" which is used to store
the alignment of the anonymous decl, and potentially other information
in the future such as section and pointer address space. However, this
new encoding is only used when the original pointer type differs from
the casted pointer type in a meaningful way.
I was able to make the LLVM backend and the C backend lower anonymous
decls with the appropriate alignment, however I will need some help
figuring out how to do this for the backends that lower anonymous decls
via src/codegen.zig and the wasm backend.