Previously, the `test-stack-traces` step was essentially just testing
error traces, and even there we didn't have much coverage. This commit
solves that by splitting the "stack trace" tests into two separate
harnesses: the "stack trace" tests are for actual stack traces (i.e.
involving stack unwinding), while the "error trace" tests are
specifically for error return traces.
The "stack trace" tests will test different configurations of:
* `-lc`
* `-fPIE`
* `-fomit-frame-pointer`
* `-fllvm`
* unwind tables (currently disabled)
* strip debug info (currently disabled)
The main goal there is to test *stack unwinding* under different
conditions. Meanwhile, the "error trace" tests will test different
configurations of `-O` and `-fllvm`; the main goal here, aside from
checking that error traces themselves do not miscompile, is to check
whether debug info is still working even in optimized builds. Of course,
aggressive optimizations *can* thwart debug info no matter what, so as
before, there is a way to disable cases for specific targets / optimize
modes.
The program which converts stack traces into a more validatable format
by removing things like addresses (previously `check-stack-trace.zig`,
now `convert-stack-trace.zig`) has been rewritten and simplified. Also,
thanks to various fixes in this branch, several workarounds have become
unnecessary: for instance, we don't need to ignore the function name
printed in stack traces in release modes, because `std.debug.Dwarf` now
uses the correct DIE for inlined functions!
Neither `test-stack-traces` nor `test-error-traces` does general foreign
architecture testing, because it seems that (at least for now) external
executors often aren't particularly good at handling stack tracing
correctly (looking at you, Wine). Generally, they just test the native
target (this matches the old behavior of `test-stack-traces`). However,
there is one exception: when on an x86_64 or aarch64 host, we will also
test the 32-bit version (x86 or arm) if the OS supports it, because such
executables can be trivially tested without an external executor.
Oh, also, I wrote a bunch of stack trace tests. Previously there was,
erm, *one* test in `test-stack-traces` which wasn't for error traces.
Now there are a good few!
This abstraction isn't really tied to DWARF at all! Really, we're just
loading some information from an ELF file which is useful for debugging.
That *includes* DWARF, but it also includes other information. For
instance, the other change here:
Now, if DWARF information is missing, `debug.SelfInfo.ElfModule` will
name symbols by finding a matching symtab entry. We actually already do
this on Mach-O, so it makes obvious sense to do the same on ELF! This
change is what motivated the restructuring to begin with.
The symtab work is derived from #22077.
Co-authored-by: geemili <opensource@geemili.xyz>
The downside of this commit is that more precise errors are no longer
propagated up. However, these errors were pretty useless in isolation
due to them having no context; and regardless, we intentionally swallow
most of them in `std.debug` anyway. Therefore, this is better in
practice, because it allows `std.debug` to give slightly more useful
warnings when handling errors. This commit does that for unwind errors,
for instance, which differentiate between the unwind info being corrupt
vs missing vs inaccessible vs unsupported.
A better solution would be to also include more detailed information via
the diagnostics pattern, but this commit is an incremental improvement.
turns out this isn't technically specific to that target at all; other
targets just don't emit mid-function 'ret' instructions as much so
certain CFI instruction patterns were only seen on aarch64.
thanks to jacob for finding the bug <3
The big endian RISC-V effort is mostly driven by MIPS (the company) which is
pivoting to RISC-V, and presumably needs a big endian variant to fill the niche
that big endian MIPS (the ISA) did.
GCC already supports these targets, but LLVM support will only appear in 22;
this commit just adds the necessary target knowledge and checks on our end.
This API is based around the unsound idea that a process can perform
checked virtual memory loads to prevent crashing. This depends on
OS-specific APIs that may be unavailable, disabled, or impossible due to
virtualization.
It also makes collecting stack traces ridiculously slow, which is a
problem for users of DebugAllocator - in other words, everybody, all the
time. It also makes strace go from being superbly clean to being awful.
* std.Io.Reader: appendRemaining no longer supports alignment and has
different rules about how exceeding limit. Fixed bug where it would
return success instead of error.StreamTooLong like it was supposed to.
* std.Io.Reader: simplify appendRemaining and appendRemainingUnlimited
to be implemented based on std.Io.Writer.Allocating
* std.Io.Writer: introduce unreachableRebase
* std.Io.Writer: remove minimum_unused_capacity from Allocating. maybe
that flexibility could have been handy, but let's see if anyone
actually needs it. The field is redundant with the superlinear growth
of ArrayList capacity.
* std.Io.Writer: growingRebase also ensures total capacity on the
preserve parameter, making it no longer necessary to do
ensureTotalCapacity at the usage site of decompression streams.
* std.compress.flate.Decompress: fix rebase not taking into account seek
* std.compress.zstd.Decompress: split into "direct" and "indirect" usage
patterns depending on whether a buffer is provided to init, matching
how flate works. Remove some overzealous asserts that prevented buffer
expansion from within rebase implementation.
* std.zig: fix readSourceFileToAlloc returning an overaligned slice
which was difficult to free correctly.
fixes#24608