Because ArrayList.initCapacity uses 'precise' capacity allocation, this should save memory on average, and definitely will save memory in cases where ArrayList is used where a regular allocated slice could have also be used.
The way `zig test` works is that it uses a stand-in
var test_functions: []const TestFn = undefined;
during semantic analysis, but then just before codegen, it swaps out the
value with a constant like this:
const test_functions: []const TestFn = .{foo, bar, baz, etc};
Before this commit, the `Module.Variable` associated with the stand-in
value was leaked; now it is properly cleaned up before being replaced.
Previously, it would emit a ret_ptr AIR instruction but that is not
correct because such an instruction would reference the result pointer
of the caller function rather than the callee function.
Instead, we emit an alloc instruction in this case. `ret_load` already
handles inlining correctly.
* C pointer types always have allowzero set to true but they omit the
word allowzero when printed.
* Implement coercion from C pointers to other pointers.
* Implement in-memory coercion for slices and pointer-like optionals.
* Make slicing a C pointer drop the allowzero bit.
* Value representation for pointer-like optionals is now allowed to use
pointer tag values in addition to the `opt_payload` tag.
* AstGen: always use `typeof` and never `typeof_elem` on the
`switch_cond`/`switch_cond_ref` instruction because both variants
return a value and not a pointer.
- Delete the `typeof_elem` ZIR instruction since it is no longer
needed.
* Sema: validateUnionInit now recognizes a comptime mutable value and
no longer emits a compile error saying "cannot evaluate constant
expression"
- Still to-do is detecting comptime union values in a function that
is not being executed at compile-time.
- This is still to-do for structs too.
* Sema: when emitting a call AIR instruction, call resolveTypeLayout on
all the parameter types as well as the return type.
* `Type.structFieldOffset` now works for unions in addition to structs.
* Fix backend using wrong union field of the slice instruction.
* LLVM backend properly sets alignment on global variables.
* Sema: add coercion for *T to *[1]T
* Sema: pointers to Decls with explicit alignment now have alignment
metadata in them.
Also switch to the more efficient encoding of the bitcast instruction
when the destination type is anyerror in 2 common cases.
LLVM backend: fix using the wrong type as the optional payload type in
the `wrap_optional` AIR instruction.
After a discussion about language specs, this seems like the best way to
go, because it's simpler to reason about both for humans and compilers.
The `bitcast_result_ptr` ZIR instruction is no longer needed.
This commit also implements writing enums, arrays, and vectors to
virtual memory at compile-time.
This unlocked some more of compiler-rt being able to build, which
in turn unlocks saturating arithmetic behavior tests.
There was also a memory leak in the comptime closure system which is now
fixed.
AIR:
* div is renamed to div_trunc.
* Add div_float, div_floor, div_exact.
- Implemented in Sema and LLVM codegen. C backend has a stub.
Improvements to std.math.big.Int:
* Add `eqZero` function to `Mutable`.
* Fix incorrect results for `divFloor`.
Compiler-rt:
* Add muloti4 to the stage2 section.
* Restructure elemPtr a bit
* New AIR instruction: slice_elem_ptr, which returns a pointer to an element of a slice
* Value: adapt elemPtr to work on slices
* New AIR instruction: slice, which constructs a slice out of a pointer
and a length.
* AstGen: use `coerced_ty` for start and end expressions, use `none`
for the sentinel, and don't try to load the result of the slice
operation because it returns a by-value result.
* Sema: pointer arithmetic is extracted into analyzePointerArithmetic
and it is used by the implementation of slice.
- Also I implemented comptime pointer addition.
* Sema: extract logic into analyzeSlicePtr, analyzeSliceLen and use them
inside the slice semantic analysis.
- The approach in stage2 is much cleaner than stage1 because it uses
more granular analysis calls for obtaining the slice pointer, doing
arithmetic on it, and checking if the length is comptime-known.
* Sema: use the slice Value Tag for slices when doing coercion from
pointer-to-array.
* LLVM backend: detect when emitting a GEP instruction into a
pointer-to-array and add the extra index that is required.
* Type: ptrAlignment for c_void returns 0.
* Implement Value.hash and Value.eql for slices.
* Remove accidentally duplicated behavior test.
* AstGen: Move `refToIndex` and `indexToRef` to Zir
* ZIR: the switch_block_*_* instruction tags are collapsed into one
switch_block tag which uses 4 bits for flags, and reduces the
scalar_cases_len field from 32 to 28 bits.
This freed up more ZIR tags, 2 of which are now used for
`switch_cond` and `switch_cond_ref` for producing the switch
condition value. For example, for union values it returns the
corresponding enum value.
* switching with multiple cases and ranges is not yet supported because
I want to change the ZIR encoding to store index pointers into the
extra array rather than storing prong indexes. This will avoid O(N^2)
iteration over prongs.
* AstGen now adds a `switch_cond` on the operand and then passes the
result of that to the `switch_block` instruction.
* Sema: partially implement `switch_capture_*` instructions.
* Sema: `unionToTag` notices if the enum type has only one possible value.
Dereferencing single pointers is now handled outside of the main switch,
which allows deduplication of some cases. This also implements the
relevant operations for pointers to types and pointers to slices.
When returning an error set or an error union from a function which has
an inferred error set, it populates the error names in addition to the
set of functions. This can have false negatives, meaning that after
checking the map of an unresolved error set, one must do full error set
resolution before emitting a compile error.
* Sema: fix returned operands not coercing to the function return type
in some cases.
- When returning an error or an error union from a function with an
inferred error set, it will now populate the inferred error set.
- Implement error set coercion for the common case of inferred error
set to inferred error set, without forcing a full resolution.
* LLVM backend: update instruction lowering that handles error unions
to respect `isByRef`.
- Also implement `wrap_err_union_err`.