This library contains:
- The global constants as used by C code.
- An Insn struct that implements can generate all the BPF instructions.
- A simple BPF virtual machine implementation that can be used for
testing programs. This has complete code-coverage and has been
extensively fuzzed.
This is a patch to glibc features.h which makes
_DYNAMIC_STACK_SIZE_SOURCE undefined unless the version is >= 2.34.
This feature was introduced with glibc 2.34 and without this patch, code
built against these headers but then run on an older glibc will end up
making a call to sysconf() that returns -1 for the value of SIGSTKSZ
and MINSIGSTKSZ.
Closes#10713
Instead of defaulting to false, just keep the option as optional to
communicate default to the build system.
Fixes one problem with building the compiler for single-threaded
targets.
LLVM bitcast wants integers that match the number of bits. So the const
bitcast has to use an i80, not an i128.
This commit makes the behavior tests fail for me, so it seems I did not
correctly construct the type. But it gets rid of the LLVM segfault.
I noticed that the strategy of memcpy the buf worked if I simply did an
LLVMConstTrunc() on the i128 to make it into an i80 before the
LLVMConstBitCast().
But is that correct in the face of different endianness? I'm not sure.
This fixes the use of multiple `Iterator`s in a row on a directory.
Previously, on many platforms, using an `Iterator` on an
already-iterated directory would give no entries.
Fixing this involved seeking to the beginning of the directory on the
first call of `next()`.
The idea is that this type gains the relevant low-level instruction emitting
functions, and that higher-level checks and deduplications are performed
somewhere else.
The spirv spec generator now also generates some support information:
Opcode gains a function to query a Zig type representing the operands
of the opcode. The idea is that this will enable a richer interface for
emitting spirv instructions.
`ArrayList.ensureTotalCapacityPrecise` uses `Allocator.reallocAtLeast` under
the hood, which can return more than `new_capacity` bytes if `alignment
!= @alignOf(T)`. This implementation of `clone` assures that
the case of `ensureTotalCapacityPrecise` is handled correctly.
Thanks @Vexu and @squeek502 for pointing this out.
First step towards #10634.
Treating stub files as C++ allows to use zig c++ as a host
compiler for nvcc.
Treating cu files as C++ allow using zig c++ as a host compiler in
CMake. CMake calls the host compiler with -E on a cu file to identify
the compiler.
Using zig c++ to directly compile CUDA code is untested.
check the set of passing tests; move towards the disabling logic being
inside each test rather than which files are included.
this enables a few more passing tests.
Takes advantage of the pattern already established with
array_init_anon. Also upgrades array_init (non-anon) to the pattern.
Implements comptime struct value equality and pointer value hashing.
This is only relevant for ELF files.
I also fixed a bug where passing a zig source file to `zig cc` would
incorrectly punt to clang because it thought there were no positional
arguments.
The freeze/unfreeze API replaces the exceptions API for hopefully
preventing bugs in codegen code using the RegisterManager. The
exceptions API is still available for backwards compatibility and will
be removed once all backends transition to the new freeze/unfreeze
API.
Implements slice types including `[]const u8` for passing as
formal parameters in DWARF. Breaking on a function accepting
a slice in `gdb` will now yield the same behavior as stage1 and/or
LLVM backend:
```zig
fn sumArrayLens(a: []const u32, b: []const u8) usize {
return a.len + b.len;
}
```
Both `a` and `b` can now be inspected in the debugger:
```
Breakpoint 1, sumArrayLens (a=..., b=...) at arr.zig:59
(gdb) p a
$1 = {ptr = 0x7fffffff685c, len = 5}
(gdb) p b
$2 = {ptr = 0x7fffffff683d "\252\252\252\\h\377\377\377\177", len = 3}
(gdb)
```
* remove `LoweringError` error set from `Emit.zig` - it actually
was less than helpful; it's better to either not throw an error
since there can be instructions with mismatching operand sizes
such as `movsx` or assert on a by instruction-basis. Currently,
let's just pass through and see how we fare.
* when moving integers into registers, check for signedness and move
with zero- or sign-extension if source operand is smaller than 8
bytes. The destination operand is always assumed to be full-width,
i.e., 8 bytes.
* clean up `airTrunc` a little to match the rest of CodeGen inst
implementations.