When we want a runtime pointer to a zero-bit value we use an undef
pointer, but what if we want a runtime pointer to a comptime-only value?
Normally, if `T` is a comptime-only type such as `*const comptime_int`,
then `*const T` would also be a comptime-only type, so anything
referencing a comptime-only value is usually also comptime-only, and
therefore not emitted to the executable.
However, what if instead we have a `*const anyopaque` pointing to a
comptime-only value? Certainly, `*const anyopaque` is a runtime type,
and so we need some runtime value to store, even when it happens to be
pointing to a comptime-only value. In this case we want to do the same
thing as we do when pointing to a zero-bit value, so we use
`hasRuntimeBits` to handle both cases instead of ignoring comptime.
Closes#12025
Without the packed qualifier, the type layout that we use to
initialize doesn't match the correct layout of the underlying
storage, causing corrupted data and past-the-end writes.
We call `sema.resolveTypeFields` in order to get the fields of structs
and unions inserted into their data structures. If it isn't called, it
can happen that the fields of a type is queried before those fields are
inserted into (for instance) `Module.Union.fields`, which would result in
a wrong 'no field named' error.
Fixes: #12486
Previously, Zig had inconsistent semantics for an enum like this:
`enum(u8){zero = 0}`
Although in theory this can only hold one possible value, the tag
`zero`, Zig no longer will treat the type this way. It will do loads and
stores, as if the type has runtime bits.
Closes#12619
Tests passed locally:
* test-behavior
* test-cases
This is not complete support for asm expressions, but allows a few more
test cases from test/behavior/asm.zig to pass. Since the non-register
inputs are named `input_${n}` they can cause name collisions: I'm
wrapping the asm expressions in their own block to prevent that.
Contextually, this change also makes test/behavior/asm.zig run for
stage2, but skips individual tests for most backends (I only verified
the C and LLVM backends successfully run one new test case) and the
entire test file for aarch64, where it's running into preexisting
shortcomings.
My previous commit added a new behavior test that passes for stage2 but
I forgot to check whether it passes for stage1. Since it does not, it
has to be disabled.
Additionally, this commit organizes behavior tests; there is no longer a
section of tests only passing for stage1. Instead, tests are disabled on
an individual basis. There is an except for the file which has global
assembly in it.
* Identify the ones that are passing and stop skipping them.
* Flatten out the main behavior.zig file and have each individual test
disable itself if it is not passing.
* make it always return a fully qualified name. stage1 is inconsistent
about this.
* AstGen: fix anon_name_strategy to correctly be `func` when anon type
creation happens in the operand of the return expression.
* Sema: implement type names for the "function" naming strategy.
* Put "enum", "union", "opaque", or "struct" in place of "anon" when
creating respective anonymous Decl names.
* std.testing: add `expectStringStartsWith`. Didn't end up using it
after all.
Also this enables the real test runner for stage2 LLVM backend (sans
wasm32) since it works now.
* Sema: fix `zirTypeInfo` allocating with the wrong arenas for some
stuff.
* LLVM: split `airDbgInline` into two functions, one for each AIR tag.
- remove the redundant copy to type_map_arena. This is the first
thing that lowerDebugType does so this hack was probably just
accidentally avoiding UB (which is still present prior to this
commit).
- don't store an inline fn inst into the di_map for the generic
decl.
- use a dummy function type for the debug info to avoid whatever UB
is happening.
- we are now ignoring the function type passed in with the
dbg_inline_begin and dbg_inline_end.
* behavior tests: prepare the vector tests to be enabled one at a time.
Mitigates #11199.
This resolves https://github.com/ziglang/zig/issues/11159
The problem was that:
1. We were not correctly deleting the field stores after recognizing
that an array initializer was a comptime-known value.
2. LLVM was not checking that the final type had no runtime bits, and
so would generate an invalid store.
This also adds several test cases for related bugs, just to check these
in for later work.