13 Commits

Author SHA1 Message Date
Jacob Young
b483defc5a Legalize: implement scalarization of binary operations 2025-05-31 18:54:28 -04:00
mlugg
d00e05f186
all: update to std.builtin.Type.Pointer.Size field renames
This was done by regex substitution with `sed`. I then manually went
over the entire diff and fixed any incorrect changes.

This diff also changes a lot of `callconv(.C)` to `callconv(.c)`, since
my regex happened to also trigger here. I opted to leave these changes
in, since they *are* a correct migration, even if they're not the one I
was trying to do!
2025-01-16 12:46:29 +00:00
Andrew Kelley
4f8d244e7e remove formatted panics
implements #17969
2024-09-26 12:35:14 -07:00
mlugg
0fe3fd01dd
std: update std.builtin.Type fields to follow naming conventions
The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.

This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
2024-08-28 08:39:59 +01:00
David Rubin
80cd53d3bb
sema: clean-up {union,struct}FieldAlignment and friends
My main gripes with this design were that it was incorrectly namespaced, the naming was inconsistent and a bit wrong (`fooAlign` vs `fooAlignment`).

This commit moves all the logic from `PerThread.zig` to use the zcu + tid system that the previous couple commits introduce.
I've organized and merged the functions to be a bit more specific to their own purpose.

- `fieldAlignment` takes a struct or union type, an index, and a Zcu (or the Sema version which takes a Pt), and gives you the alignment of the field at the index.
- `structFieldAlignment` takes the field type itself, and provides the logic to handle special cases, such as externs.

A design goal I had in mind was to avoid using the word 'struct' in the function name, when it worked for things that aren't structs, such as unions.
2024-08-25 15:16:46 -07:00
David Rubin
b4bb64ce78
sema: rework type resolution to use Zcu when possible 2024-08-25 15:16:42 -07:00
Jacob Young
ca02266157 Zcu: pass PerThread to intern pool string functions 2024-07-07 22:59:52 -04:00
Jacob Young
525f341f33 Zcu: introduce PerThread and pass to all the functions 2024-07-07 22:59:52 -04:00
mlugg
2f0f1efa6f
compiler: type.zig -> Type.zig 2024-07-04 21:01:42 +01:00
Andrew Kelley
0fcd59eada rename src/Module.zig to src/Zcu.zig
This patch is a pure rename plus only changing the file path in
`@import` sites, so it is expected to not create version control
conflicts, even when rebasing.
2024-06-22 22:59:56 -04:00
mlugg
d0e74ffe52
compiler: rework comptime pointer representation and access
We've got a big one here! This commit reworks how we represent pointers
in the InternPool, and rewrites the logic for loading and storing from
them at comptime.

Firstly, the pointer representation. Previously, pointers were
represented in a highly structured manner: pointers to fields, array
elements, etc, were explicitly represented. This works well for simple
cases, but is quite difficult to handle in the cases of unusual
reinterpretations, pointer casts, offsets, etc. Therefore, pointers are
now represented in a more "flat" manner. For types without well-defined
layouts -- such as comptime-only types, automatic-layout aggregates, and
so on -- we still use this "hierarchical" structure. However, for types
with well-defined layouts, we use a byte offset associated with the
pointer. This allows the comptime pointer access logic to deal with
reinterpreted pointers far more gracefully, because the "base address"
of a pointer -- for instance a `field` -- is a single value which
pointer accesses cannot exceed since the parent has undefined layout.
This strategy is also more useful to most backends -- see the updated
logic in `codegen.zig` and `codegen/llvm.zig`. For backends which do
prefer a chain of field and elements accesses for lowering pointer
values, such as SPIR-V, there is a helpful function in `Value` which
creates a strategy to derive a pointer value using ideally only field
and element accesses. This is actually more correct than the previous
logic, since it correctly handles pointer casts which, after the dust
has settled, end up referring exactly to an aggregate field or array
element.

In terms of the pointer access code, it has been rewritten from the
ground up. The old logic had become rather a mess of special cases being
added whenever bugs were hit, and was still riddled with bugs. The new
logic was written to handle the "difficult" cases correctly, the most
notable of which is restructuring of a comptime-only array (for
instance, converting a `[3][2]comptime_int` to a `[2][3]comptime_int`.
Currently, the logic for loading and storing work somewhat differently,
but a future change will likely improve the loading logic to bring it
more in line with the store strategy. As far as I can tell, the rewrite
has fixed all bugs exposed by #19414.

As a part of this, the comptime bitcast logic has also been rewritten.
Previously, bitcasts simply worked by serializing the entire value into
an in-memory buffer, then deserializing it. This strategy has two key
weaknesses: pointers, and undefined values. Representations of these
values at comptime cannot be easily serialized/deserialized whilst
preserving data, which means many bitcasts would become runtime-known if
pointers were involved, or would turn `undefined` values into `0xAA`.
The new logic works by "flattening" the datastructure to be cast into a
sequence of bit-packed atomic values, and then "unflattening" it; using
serialization when necessary, but with special handling for `undefined`
values and for pointers which align in virtual memory. The resulting
code is definitely slower -- more on this later -- but it is correct.

The pointer access and bitcast logic required some helper functions and
types which are not generally useful elsewhere, so I opted to split them
into separate files `Sema/comptime_ptr_access.zig` and
`Sema/bitcast.zig`, with simple re-exports in `Sema.zig` for their small
public APIs.

Whilst working on this branch, I caught various unrelated bugs with
transitive Sema errors, and with the handling of `undefined` values.
These bugs have been fixed, and corresponding behavior test added.

In terms of performance, I do anticipate that this commit will regress
performance somewhat, because the new pointer access and bitcast logic
is necessarily more complex. I have not yet taken performance
measurements, but will do shortly, and post the results in this PR. If
the performance regression is severe, I will do work to to optimize the
new logic before merge.

Resolves: #19452
Resolves: #19460
2024-04-17 13:41:25 +01:00
Jacob Young
7611d90ba0 InternPool: remove slice from byte aggregate keys
This deletes a ton of lookups and avoids many UAF bugs.

Closes #19485
2024-04-08 13:24:08 -04:00
mlugg
5ec6e3036b
Sema: introduce separate MutableValue representation for comptime-mutable memory
Perhaps someday, we will make Sema operate on mutable values more
generally. For now, it makes sense to split out this representation,
since it is only used in comptime pointer accesses.

There are some currently unused methods on `MutableValue` which will
be used once I rewrite the comptime pointer access logic to be less
terrible.

The commit following this one will - at long last - delete the legacy
Value representation
2024-03-26 13:48:06 +00:00