I'm working on a build.zig file where I'm leveraging InstallRawStep but I'd like to change the install dir. This allows the install dir to be changd and also enhances InstallRawStep to add more options in the future by putting them into a struct with default values. This also removes the need for an extra addInstallStepWithFormat function in build.zig.
In 7e23b3245a9bf6e002009e6c18c10a9995671afa I made -O flags to the
linker emit a warning that the argument does nothing. That was not
correct however; LLD does have some logic that does different things
depending on -O0, -O1, and -O2. It defaults to -O1, and it does less
optimizations with -O0 and more with -O2.
With this commit, e.g. `-Wl,-O1` is supported by the `zig cc` frontend,
and by default we pass `-O0` to LLD in debug mode, and `-O3` in release
modes.
I also fixed a bug in the LLD ELF linker line which was incorrectly
passing `-O` flags instead of `--lto-O` flags for LTO.
* add support for compiling Objective-C++ code
Prior to this change, calling `step.addCSourceFiles` with Obj-C++ file extensions
(`.mm`) would result in an error due to Zig not being aware of that extension.
Clang supports an `-ObjC++` compilation mode flag, but it was only possible to use
if you violated standards and renamed your `.mm` Obj-C++ files to `.m` (Obj-C) to
workaround Zig being unaware of the extension.
This change makes Zig aware of `.mm` files so they can be compiled, enabling compilation
of projects such as [Google's Dawn WebGPU](https://dawn.googlesource.com/dawn/) using
a `build.zig` file only.
Helps hexops/mach#21
Signed-off-by: Stephen Gutekanst <stephen@hexops.com>
* test/standalone: add ObjC++ compilation/linking test
Based on the existing objc example, just tweaked for ObjC++.
Signed-off-by: Stephen Gutekanst <stephen@hexops.com>
* without this, when an included relocatable references a common symbol
from another translation unit would not be correctly removed from
the unresolved lookup table triggering a misleading assertion down
the line
* assert upon removal that we indeed removed a ref instead of silently
ignoring in debug
* add test case that covers this issue
Otherwise, for last sections in segments it could happen we would
not expand the segment when actually required thus exceeding the
segment's size and causing data clobbering and dyld runtime errors.
* Added fseeki64.c from mingw-w64 9.0.0. This file was missing in Zig distribution. This file contains implementation for _fseeki64 and _ftelli64 functions.
Previously, I have incorrectly assumed that with two-level namespace
we only need to link in dylibs/frameworks that actually export symbols
which are undefined in the linked image. Turns out, regardless of
whether we link with two-level namespace (default on macOS) or a
flat namespace (more common on other platforms), we always need to
put the dylibs/frameworks as specified by the user from the linker
line into the final linked image.
This way, we can explicitly signal if a test requires the presence
of macOS SDK to build. For instance, when testing our in-house
MachO linker for correctly linking Objective-C, we require the
presence of the SDK on the host system, and we can enforce this
with `-Denable-macos-sdk` flag to `zig build test-standalone`.
* Don't skip the TLS initialization (Fixes#9083)
* Add a test case where a PIE program is built and run
* Refactor the common initialization code in the Linux startup
sequence.
Clang has a completely inconsistent CLI for its integrated assembler for
each target architecture. For x86_64, for example, it does not accept
an -mcpu parameter, and emits "warning: unused parameter". However, for
ARM, -mcpu is needed in order to properly lower assembly to machine code
instructions (see new standalone test case provided thanks to @g-w1).
This is a compromise between
b8f85a805bf61ae11d6ee2bd6d8356fbc98ee3ba and
afb9f695b1bdbf81185e7d55d5783bcbab880989.
This commits permits passing in static archives using the system
lib flag `-la`. With this commit, `zig ld` will now look firstly for
a dynamic library (which always takes precedence), and will fall back
on `liba.a` if the dylib is not found. The static archive is searched
for in the system lib search dirs like the dylibs.
Tests a scenario where the linker line has the following:
```
main.o libA.a libB.a
```
where `main.o` pulls a symbol from `libB.a`, which in turn is
dependent on a symbol from `libA.a`.
This makes a few changes to the base64 codecs.
* The padding character is optional. The common "URL-safe" variant, in
particular, is generally not used with padding. This is also the case for
password hashes, so having this will avoid code duplication with bcrypt,
scrypt and other functions.
* The URL-safe variant is added. Instead of having individual constants
for each parameter of each variant, we are now grouping these in a
struct. So, `standard_pad_char` just becomes `standard.pad_char`.
* Types are not `snake_case`'d any more. So, `standard_encoder` becomes
`standard.Encoder`, as it is a type.
* Creating a decoder with ignored characters required the alphabet and
padding. Now, `standard.decoderWithIgnore(<ignored chars>)` returns a
decoder with the standard parameters and the set of ignored chars.
* Whatever applies to `standard.*` obviously also works with `url_safe.*`
* the `calcSize()` interface was inconsistent, taking a length in the
encoder, and a slice in the encoder. Rename the variant that takes a
slice to `calcSizeForSlice()`.
* In the decoder with ignored characters, add `calcSizeUpperBound()`,
which is more useful than the one that takes a slice in order to size
a fixed buffer before we have the data.
* Return `error.InvalidCharacter` when the input actually contains
characters that are neither padding nor part of the alphabet. If we
hit a padding issue (which includes extra bits at the end),
consistently return `error.InvalidPadding`.
* Don't keep the `char_in_alphabet` array permanently in a decoder;
it is only required for sanity checks during initialization.
* Tests are unchanged, but now cover both the standard (padded) and
the url-safe (non-padded) variants.
* Add an error set, rename `OutputTooSmallError` to `NoSpaceLeft`
to match the `hex2bin` equivalent.
The steps to repro this issue are:
zig build-obj hello.zig -target x86_64-windows-msvc
zig build-exe hello.obj -target x86_64-windows-msvc --subsystem console
-lkernel32 -lntdll
What was happening is that the main Compilation added a work item to
produce kernel32.lib. Then it added a sub-Compilation to build zig's
libc, which ended up calling a function with extern "kernel32", which
caused the sub-Compilation to also try to produce kernel32.lib. The main
Compilation and sub-Compilation do not coordinate about the set of
import libraries that they will be trying to build, so this caused a
deadlock.
This commit solves the problem by disabling the extern "foo" feature
from working when building compiler_rt or libc. Zig's linker code is now
responsible for putting the appropriate import libs on the linker line,
if any for compiler_rt and libc.
Related: #5825
Positional shared library arguments were not being detected as causing
dynamic linking, resulting in invalid linker lines. LLD did not have an
error message for this when targeting x86_64-linux but it did emit an
error message when targeting aarch64-linux, which is how I noticed the
problem.
This surfaced an error having to do with fifo.pipe() in the cat example
which I did not diagnose but solved the issue by doing the revamp that
was already overdue for that example.
It appears that the zig-window project was exploiting the previous
behavior for it to function properly, so this prompts the question, is
there some kind of static/dynamic executable hybrid that the compiler
should recognize? Unclear - but we can discuss that in #7240.