The changes to result locations and generic calls has caused mild
changes to some compile errors. Some are slightly better, some slightly
worse, but none of the changes are major.
This change allows the following types to appear in extern structs:
* Zero-bit integers
* void
* zero-sized structs and packed structs
* enums with zero-bit backing integers
* arrays of any length with zero-size elements
Currently, in a debug build of the compiler, `@embedFile("")` is a crash;
in a release build the compiler, `@embedFile("")` is "error: unable to open '': OutOfMemory".
Fixes#16311
The actual cause of #16311 is the `start_is_zero` special case:
```zig
const range_len = if (end_val == .none or start_is_zero)
end_val
else
try parent_gz.addPlNode(.sub, input, Zir.Inst.Bin{
.lhs = end_val,
.rhs = start_val,
});
```
It only happens if the range start is 0. In that case we would not perform any type checking.
Only in the other cases coincidentally `.sub` performs type checking in Sema, but the errors are still rather poor:
```
$ zig test x.zig
x.zig:9:15: error: invalid operands to binary expression: 'Pointer' and 'Pointer'
for ("abc".."def") |val| {
~~~~~^~~~~~~
```
Note how it's the same as if I use `-`:
```
x.zig:9:11: error: invalid operands to binary expression: 'Pointer' and 'Pointer'
"abc" - "def";
~~~~~~^~~~~~~
```
Now after this PR, the errors are much clearer for both range start and end:
```
x.zig:9:10: error: expected type 'usize', found '*const [3:0]u8'
for ("abc".."def") |val| {
^~~~~
```
This is why I decided to use `.ty` instead of `.coerced_ty` for both range start and end rather than
just perform type checking in that `end_val == .none or start_is_zero` case.
Now you can add new calling conventions that you confirmed to work with
variadic functions simply in a single place and the rest will work
automatically.
Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:
* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
Opaque and `noreturn` makes sense since they don't represent real
values, but `null` and `undefined` are perfectly normal
comptime-only values.
Closes#16088
The existing logic for peer type resolution was quite convoluted and
buggy. This rewrite makes it much more resilient, readable, and
extensible. The algorithm works by first iterating over the types to
select a "strategy", then applying that strategy, possibly applying peer
resolution recursively.
Several new tests have been added to cover cases which the old logic did
not correctly handle.
Resolves: #15138Resolves: #15644Resolves: #15693Resolves: #15709Resolves: #15752
To do this, I expanded SwitchProngSrc a bit. Several of the tags there
aren't actually used by any current errors, but they're there for
consistency and if we ever need them.
Also delete a now-redundant test and fix another.
This is a bit harder than it seems at first glance. Actually resolving
the type is the easy part: the interesting thing is actually getting the
capture value. We split this into three cases:
* If all payload types are the same (as is required in status quo), we
can just do what we already do: get the first field value.
* If all payloads are in-memory coercible to the resolved type, we still
fetch the first field, but we also emit a `bitcast` to convert to the
resolved type.
* Otherwise, we need to handle each case separately. We emit a nested
`switch_br` which, for each possible case, gets the corresponding
union field, and coerces it to the resolved type. As an optimization,
the inner switch's 'else' prong is used for any peer which is
in-memory coercible to the target type, and the bitcast approach
described above is used.
Pointer captures have the additional constraint that all payload types
must be in-memory coercible to the resolved type.
Resolves: #2812
All but 2 test cases now pass (tested on x86_64 Linux, native only). The
remaining two signify an issue requiring a larger refactor, which I will
do in a separate commit.
Notable changes:
* Fix uninitialized memory when allocating objects from free lists
* Implement TypedValue printing for pointers
* Fix some TypedValue printing logic
* Work around non-existence of InternPool.remove implementation
The idea here is that there are two ways we can reference a function at runtime:
* Through a direct call, i.e. where the function is comptime-known
* Through a function pointer
This means we can easily perform a form of rudimentary escape analysis
on functions. If we ever see a `decl_ref` or `ref` of a function, we
have a function pointer, which could "leak" into runtime code, so we
emit the function; but for a plain `decl_val`, there's no need to.
This change means that `comptime { _ = f; }` no longer forces a function
to be emitted, which was used for some things (mainly tests). These use
sites have been replaced with `_ = &f;`, which still triggers analysis
of the function body, since you're taking a pointer to the function.
Resolves: #6256Resolves: #15353