* fix merge conflicts
* rename the declarations
* reword documentation
* extract FixedBufferAllocator to separate file
* take advantage of locals
* remove the assertion about max alignment in Allocator API, leaving it
Allocator implementation defined
* fix non-inline function call in start logic
The GeneralPurposeAllocator implementation is totally broken because it
uses global state but I didn't address that in this commit.
heap.zig: define new default page sizes
heap.zig: add min/max_page_size and their options
lib/std/c: add miscellaneous declarations
heap.zig: add pageSize() and its options
switch to new page sizes, especially in GPA/stdlib
mem.zig: remove page_size
- patch authored by Jacob Young
- tested on alpine-aarch64, 3.21.0, qemu-system 9.2.0
- issue manifested on Alpine Linux aarch64 under qemu-system where
zig2 fails during bootstrap: error.ProcessFdQuotaExceeded
* `std.builtin.Panic` -> `std.builtin.panic`, because it is a namespace.
* `root.Panic` -> `root.panic` for the same reason. There are type
checks so that we still allow the legacy `pub fn panic` strategy in
the 0.14.0 release.
* `std.debug.SimplePanic` -> `std.debug.simple_panic`, same reason.
* `std.debug.NoPanic` -> `std.debug.no_panic`, same reason.
* `std.debug.FormattedPanic` is now a function `std.debug.FullPanic`
which takes as input a `panicFn` and returns a namespace with all the
panic functions. This handles the incredibly common case of just
wanting to override how the message is printed, whilst keeping nice
formatted panics.
* Remove `std.builtin.panic.messages`; now, every safety panic has its
own function. This reduces binary bloat, as calls to these functions
no longer need to prepare any arguments (aside from the error return
trace).
* Remove some legacy declarations, since a zig1.wasm update has
happened. Most of these were related to the panic handler, but a quick
grep for "zig1" brought up a couple more results too.
Also, add some missing type checks to Sema.
Resolves: #22584
formatted -> full
When using the self-hosted backends, especially in incremental mode, the
.eh_frame_hdr section may be incomplete, so we can't treat it as authoritative.
Instead, if we started out intending to use .eh_frame_hdr but find that it's
incomplete, load .eh_frame/.debug_frame on demand and use that info going
forward.
The freestanding and other OS targets by default need to just @trap in the
default Panic implementation.
And `isValidMemory` won't work with freestanding or other targets.
Update the unwind_freestanding.zig test case to also run on the 'other' OS
target, too. This should keep the Zig's stacktrace generation from
regressing on the standalone targets.
Xcode requires target arm64_32 (aarch64-watchos-ilp32) in order to
build code for Apple Watches. This commit fixes compilation errors
that appear when compiling with that target.
although they would also pass simply reverted to master branch because
I made the deprecated API still work for now (to be removed after 0.14.0
is tagged)
Introduces `std.builtin.Panic` which is a complete interface for
panicking. Provide `std.debug.FormattedPanic` and
`std.debug.SimplePanic` and let the user choose, or make their own.
PR #20927 made some improvements to the `binarySearch` API, but one
change I found surprising was the relationship between the left-hand and
right-hand parameters of `compareFn` was inverted. This is different
from how comparison functions typically behave, both in other parts of
Zig (e.g. `std.math.order`) and in other languages (e.g. C's `bsearch`).
Unless a strong reason can be identified and documented for doing
otherwise, I think it'll be better to stick with convention.
While writing this patch and changing things back to the way they were,
the predicates of `lowerBound` and `upperBound` seemed to be the only
areas that benefited from the inversion. I don't think that benefit is
worth the cost, personally. Calling `Order.invert()` in the predicates
accomplishes the same goal.
These names aren't matching any formal specification; they're mostly
just ripped from LLVM code. Therefore, we should definitely follow Zig
naming conventions here.
Most of these changes seem like improvements. The PDB thing had a TODO
saying it used to crash; I anticipate it works now, we'll see what CI
does.
The `std.os.uefi` field renames are a notable breaking change.
The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.
This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
Closes#21132
According to the XDG Base Directory specification
(https://specifications.freedesktop.org/basedir-spec/latest/#variables),
empty values for these environment variables should be treated the same
as if they are unset. Specifically, for the instances changed in this
commit,
> $XDG_DATA_HOME defines the base directory relative to which
> user-specific data files should be stored. If $XDG_DATA_HOME is either
> not set **or empty**, a default equal to $HOME/.local/share should be
> used.
and
> $XDG_CACHE_HOME defines the base directory relative to which
> user-specific non-essential data files should be stored. If
> $XDG_CACHE_HOME is either not set **or empty**, a default equal to
> $HOME/.cache should be used.
(emphasis mine)
In addition to the case mentioned in the linked issue, all other uses of
XDG environment variables were corrected.
Two fixes here:
Sort by addresses after generating the line table. Debug information in
the wild is not sorted and the rest of the implementation requires this
data to be sorted.
Handle DW.LNE.end_sequence correctly. When I originally wrote this code,
I misunderstood what this opcode was supposed to do. Now I understand
that it marks the *end* of an address range, meaning the current address
does *not* map to the current line information.
This fixes source location information for a big chunk of ReleaseSafe
code.
The implementation assumed that compilation units did not overlap, which
is not the case. The new implementation uses .debug_ranges to iterate
over the requested PCs.
This partially resolves#20990. The dump-cov tool is fixed but the same
fix needs to be applied to `std.Build.Fuzz.WebServer` (sorting the PC
list before passing it to be resolved by debug info).
I am observing LLVM emit multiple 8-bit counters for the same PC
addresses when enabling `-fsanitize-coverage=inline-8bit-counters`. This
seems like a bug in LLVM. I can't fathom why that would be desireable.
The previous mecanism for linux distributions to delivers debug info into `/usr/lib/debug` no longer seems in use.
the current mecanism often is using `debuginfod` (https://sourceware.org/elfutils/Debuginfod.html)
This commit only tries to load already available debuginfo but does not try to make any download requests.
the user can manually run `debuginfod-find debuginfo PATH` to populate the cache.
- look up the debuglink file in the directory of the executable file (instead of the cwd)
- fix parsing of debuglink section (the 4-byte alignement is within the file, unrelated to the in-memory address)
* libfuzzer: close file after mmap
* fuzzer/main.js: connect with EventSource and debug dump the messages.
currently this prints how many fuzzer runs have been attempted to
console.log.
* extract some `std.debug.Info` logic into `std.debug.Coverage`.
Prepares for consolidation across multiple different executables which
share source files, and makes it possible to send all the
PC/SourceLocation mapping data with 4 memcpy'd arrays.
* std.Build.Fuzz:
- spawn a thread to watch the message queue and signal event
subscribers.
- track coverage map data
- respond to /events URL with EventSource messages on a timer
* std.debug.Dwarf: add `sortCompileUnits` along with a field to track
the state for the purpose of assertions and correct API usage.
This makes batch lookups faster.
- in the future, findCompileUnit should be enhanced to rely on sorted
compile units as well.
* implement `std.debug.Dwarf.resolveSourceLocations` as well as
`std.debug.Info.resolveSourceLocations`. It's still pretty slow, since
it calls getLineNumberInfo for each array element, repeating a lot of
work unnecessarily.
* integrate these APIs with `std.Progress` to understand what is taking
so long.
The output I'm seeing from this tool shows a lot of missing source
locations. In particular, the main area of interest is missing for my
tokenizer fuzzing example.
with debug info resolved.
begin efforts of providing `std.debug.Info`, a cross-platform
abstraction for loading debug information into an in-memory format that
supports queries such as "what is the source location of this virtual
memory address?"
Unlike `std.debug.SelfInfo`, this API does not assume the debug
information in question happens to match the host CPU architecture, OS,
or other target properties.
There are two concepts here: one for whether dwarf supports unwinding on
that target, and another for whether the Zig standard library
implements it yet.
...which have a ucontext_t but not a PC register. The current stack
unwinding implementation does not yet support this architecture.
Also fix name of `std.debug.SelfInfo.openSelf` to remove redundancy.
Also removed this hook into root providing an "openSelfDebugInfo"
function. Sorry, this debugging code is not of sufficient quality to
offer a plugin API right now.
After this commit:
`std.debug.SelfInfo` is a cross-platform abstraction for the current
executable's own debug information, with a goal of minimal code bloat
and compilation speed penalty.
`std.debug.Dwarf` does not assume the current executable is itself the
thing being debugged, however, it does assume the debug info has the
same CPU architecture and OS as the current executable. It is planned to
remove this limitation.
This code has the hard-coded goal of supporting the executable's own
debug information and makes design choices along that goal, such as
memory-mapping the inputs, using dl_iterate_phdr, and doing conditional
compilation on the host target.
A more general-purpose implementation of debug information may be able
to share code with this, but there are some fundamental
incompatibilities. For example, the "SelfInfo" implementation wants to
avoid bloating the binary with PDB on POSIX systems, and likewise DWARF
on Windows systems, while a general-purpose implementation needs to
support both PDB and DWARF from the same binary. It might, for example,
inspect the debug information from a cross-compiled binary.
`SourceLocation` now lives at `std.debug.SourceLocation` and is
documented.
Deprecate `std.debug.runtime_safety` because it returns the optimization
mode of the standard library, when the caller probably wants to use the
optimization mode of their own module.
`std.pdb.Pdb` is moved to `std.debug.Pdb`, mirroring the recent
extraction of `std.debug.Dwarf` from `std.dwarf`.
I have no idea why we have both Module (with a Windows-specific
definition) and WindowsModule. I left some passive aggressive doc
comments to express my frustration.
std.debug.Dwarf is the parsing/decoding logic. std.dwarf remains the
unopinionated types and bits alone.
If you look at this diff you can see a lot less redundancy in
namespaces.