* AstGen: fix not emitting `struct_init_empty` when an explicit type is
present in struct initialization syntax.
* AstGen: these two syntaxes now lower to identical ZIR:
- `var a = A{ .b = c };`
- `var a = @as(A, .{ .b = c });`
* Zir: clarify `auto_enum_tag` in the doc comments.
* LLVM Backend: fix lowering of function return types when the type has
0 bits.
* prepare compiler-rt to support being compiled by stage2
- put in a few minor workarounds that will be removed later, such as
using `builtin.stage2_arch` rather than `builtin.cpu.arch`.
- only try to export a few symbols for now - we'll move more symbols
over to the "working in stage2" section as they become functional
and gain test coverage.
- use `inline fn` at function declarations rather than `@call` with an
always_inline modifier at the callsites, to avoid depending on the
anonymous array literal syntax language feature (for now).
* AIR: replace floatcast instruction with fptrunc and fpext for
shortening and widening floating point values, respectively.
* Introduce a new ZIR instruction, `export_value`, which implements
`@export` for the case when the thing to be exported is a local
comptime value that points to a function.
- AstGen: fix `@export` not properly reporting ambiguous decl
references.
* Sema: handle ExportOptions linkage. The value is now available to all
backends.
- Implement setting global linkage as appropriate in the LLVM
backend. I did not yet inspect the LLVM IR, so this still needs to
be audited. There is already a pending task to make sure the alias
stuff is working as intended, and this is related.
- Sema almost handles section, just a tiny bit more code is needed in
`resolveExportOptions`.
* Sema: implement float widening and shortening for both `@floatCast`
and float coercion.
- Implement the LLVM backend code for this as well.
There were two things to resolve here:
* Snektron's branch edited Zir printing, but in master branch
I moved the printing code from Zir.zig to print_zir.zig. So that
just had to be moved over.
* In master branch I fleshed out coerceInMemory a bit more, which
caused one of Snektron's test cases to fail, so I had to add
addrspace awareness to that. Once I did that the tests passed again.
* introduce float_to_int and int_to_float AIR instructionts and
implement for the LLVM backend and C backend.
* Sema: implement `zirIntToFloat`.
* Sema: implement `@atomicRmw` comptime evaluation
- introduce `storePtrVal` for when one needs to store a Value to a
pointer which is a Value, and assert it happens at comptime.
* Value: introduce new functionality:
- intToFloat
- numberAddWrap
- numberSubWrap
- numberMax
- numberMin
- bitwiseAnd
- bitwiseNand (not implemented yet)
- bitwiseOr
- bitwiseXor
* Sema: hook up `zirBitwise` to the new Value bitwise implementations
* Type: rename `isFloat` to `isRuntimeFloat` because it returns `false`
for `comptime_float`.
* test runner is improved to respect `error.SkipZigTest`
* start code is improved to `@setAlignStack(16)` before calling main()
* the newly passing behavior test has a workaround for the fact that
stage2 cannot yet call `std.Target.x86.featureSetHas()` at comptime.
This is blocking on comptime closures. The workaround is that there
is a new decl `@import("builtin").stage2_x86_cx16` which is a `bool`.
* Implement `@setAlignStack`. This language feature should be re-evaluated
at some point - I'll file an issue for it.
* LLVM backend: apply/remove the cold attribute and noinline attribute
where appropriate.
* LLVM backend: loads and stores are properly annotated with alignment
and volatile attributes.
* LLVM backend: allocas are properly annotated with alignment.
* Type: fix integers reporting wrong alignment for 256-bit integers and
beyond. Once you get to 16 byte aligned, there is no further
alignment for larger integers.
* langref: add some more "see also" links for atomics
* Add the following AIR instructions
- atomic_load
- atomic_store_unordered
- atomic_store_monotonic
- atomic_store_release
- atomic_store_seq_cst
- atomic_rmw
* Implement those AIR instructions in LLVM and C backends.
* AstGen: make the `ty` result locations for `@atomicRmw`, `@atomicLoad`,
and `@atomicStore` be `coerced_ty` to avoid unnecessary ZIR
instructions when Sema will be doing the coercions redundantly.
* Sema for `@atomicLoad` and `@atomicRmw` is done, however Sema for
`@atomicStore` is not yet implemented.
- comptime eval for `@atomicRmw` is not yet implemented.
* Sema: flesh out `coerceInMemoryAllowed` a little bit more. It can now
handle pointers.
Conflicts:
* cmake/Findclang.cmake
* cmake/Findlld.cmake
* cmake/Findllvm.cmake
In master branch, more search paths were added to these files with "12"
in the path. In this commit I updated them to "13".
* src/stage1/codegen.cpp
* src/zig_llvm.cpp
* src/zig_llvm.h
In master branch, ZigLLVMBuildCmpXchg is improved to add
`is_single_threaded`. However, the LLVM 13 C API has this already, and
in the llvm13 branch, ZigLLVMBuildCmpXchg is deleted in favor of the C
API. In this commit I updated stage2 to use the LLVM 13 C API rather
than depending on an improved ZigLLVMBuildCmpXchg.
Additionally, src/target.zig largestAtomicBits needed to be updated to
include the new m68k ISA.
* Implement Sema for `@cmpxchgWeak` and `@cmpxchgStrong`. Both runtime
and comptime codepaths are implement.
* Implement Codegen for LLVM backend and C backend.
* Add LazySrcLoc.node_offset_builtin_call_argX 3...5
* Sema: rework comptime control flow.
- `error.ComptimeReturn` is used to signal that a comptime function
call has returned a result (stored in the Inlining struct).
`analyzeCall` notices this and handles the result.
- The ZIR instructions `break_inline`, `block_inline`,
`condbr_inline` are now redundant and can be deleted. `break`,
`block`, and `condbr` function equivalently inside a comptime scope.
- The ZIR instructions `loop` and `repeat` also are modified to
directly perform comptime control flow inside a comptime scope,
skipping an unnecessary mechanism for analysis of runtime code.
This makes Zig perform closer to an interpreter when evaluating
comptime code.
* Sema: zirRetErrValue looks at Sema.ret_fn_ty rather than sema.func
for adding to the inferred error set. This fixes a bug for
inlined/comptime function calls.
* Implement ZIR printing for cmpxchg.
* stage1: make cmpxchg respect --single-threaded
- Our LLVM C++ API wrapper failed to expose this boolean flag before.
* Fix AIR printing for struct fields showing incorrect liveness data.
- adds 1 simple behavior tests for each
which does integer and vector ops at
runtime and comptime
- adds bigint_*_sat() methods for each
- use CreateIntrinsic() which accepts a
variable number of arguments to pass
the scale parameter
* update langref
- added case to test/compile_errors.zig given floats
- explain upstream bug in llvm.smul.fix.sat and link to #9643 in langref and commented out test cases
* sat-arithmetic: skip mul tests if arch == .wasm32 because ci is erroring with 'LLVM ERROR: Unable to expand fixed point multiplication' when compiling for wasm32
Also:
* improve the "ambiguous reference" error by swapping the order of
"declared here" and "also declared here" notes.
* improve the "not accessible from inner function" error:
- point out that it has to do with the thing being mutable
- eliminate the incorrect association with it being a function
- note where it crosses a namespace boundary
* struct field types are evaluated in a context that has the struct
namespace visible. Likewise with align expressions, linksection
expressions, enum tag values, and union/enum tag argument
expressions.
Closes#9194Closes#9622
* stage2 AstGen: add missing compile error for declaring a local
that shadows a primitive. Even with `@""` syntax, it may not have
the same name as a primitive.
* stage2 AstGen: add a compile error for a global declaration
whose name matches a primitive. However it is allowed when using
`@""` syntax.
* stage1: delete all "declaration shadows primitive" compile errors
because they are now handled by stage2 AstGen.
* stage1/stage2 AstGen: notice when using `@""` syntax and:
- treat `_` as a regular identifier
- skip checking if an identifire is a primitive
Check the new test cases for clarifications on semantics.
closes#6062
Locals are not allowed to shadow declarations, but declarations are
allowed to shadow each other, as long as there are no ambiguous
references.
closes#678
This is a backwards-compatible language change.
Previously, `@intToEnum` coerced its integer operand to the integer tag
type of the destination enum type, often requiring the callsite to
additionally wrap the operand in an `@intCast`. Now, the `@intCast` is
implicit, and any integer operand can be passed to `@intToEnum`.
The same as before, it is illegal behavior to pass any integer which does
not have a corresponding enum tag.
* Introduce `memoized_calls` to `Module` which stores all the comptime
function calls that are cached. It is keyed on the `*Fn` and the
comptime arguments, but it does not yet properly detect comptime function
pointers and avoid memoizing in this case. So it will have false
positives for when a comptime function call mutates data through a
pointer parameter.
* Sema: Add a new helper function: `resolveConstMaybeUndefVal`
* Value: add `enumToInt` method and use it in `zirEnumToInt`. It is
also used by the hashing function.
* Value: fix representation of optionals to match error unions.
Previously it would not handle nested optionals correctly. Now it
matches the memory layout of error unions and supports nested
optionals properly. This required changes in all the backends for
generating optional constants.
* TypedValue gains `eql` and `hash` methods.
* Value: Implement hashing for floats, optionals, and enums.
Additionally, the zig type tag is added to the hash, where it was not
previously, so that values of differing types will get different
hashes.
The big change in this commit is making `semaDecl` resolve the fields if
the Decl ends up being a struct or union. It needs to do this while
the `Sema` is still in scope, because it will have the resolved AIR
instructions that the field type expressions possibly reference. We do
this after the decl is populated and set to `complete` so that a `Decl`
may reference itself.
Everything else is fixes and improvements to make the test suite pass
again after making this change.
* New AIR instruction: `ptr_elem_ptr`
- Implemented for LLVM backend
* New Type tag: `type_info` which represents `std.builtin.TypeInfo`. It
is used by AstGen for the operand type of `@Type`.
* ZIR instruction `set_float_mode` uses `coerced_ty` to avoid
superfluous `as` instruction on operand.
* ZIR instruction `Type` uses `coerced_ty` to properly handle result
location type of operand.
* Fix two instances of `enum_nonexhaustive` Value Tag not handled
properly - it should generally be handled the same as `enum_full`.
* Fix struct and union field resolution not copying Type and Value
objects into its Decl arena.
* Fix enum tag value resolution discarding the ZIR=>AIR instruction map
for the child Sema, when they still needed to be accessed.
* Fix `zirResolveInferredAlloc` use-after-free in the AIR instructions
data array.
* Fix `elemPtrArray` not respecting const/mutable attribute of pointer
in the result type.
* Fix LLVM backend crashing when `updateDeclExports` is called before
`updateDecl`/`updateFunc` (which is, according to the API, perfectly
legal for the frontend to do).
* Fix LLVM backend handling element pointer of pointer-to-array. It
needed another index in the GEP otherwise LLVM saw the wrong type.
* Fix LLVM test cases not returning 0 from main, causing test failures.
Fixes a regression introduced in
6a5094872f10acc629543cc7f10533b438d0283a.
* Implement comptime shift-right.
* Implement `@Type` for integers and `@TypeInfo` for integers.
* Implement union initialization syntax.
* Implement `zirFieldType` for unions.
* Implement `elemPtrArray` for a runtime-known operand.
* Make `zirLog2IntType` support RHS of shift being `comptime_int`. In
this case it returns `comptime_int`.
The motivating test case for this commit was originally:
```zig
test "example" {
var l: List(10) = undefined;
l.array[1] = 1;
}
fn List(comptime L: usize) type {
var T = u8;
return struct {
array: [L]T,
};
}
```
However I changed it to:
```zig
test "example" {
var l: List = undefined;
l.array[1] = 1;
}
const List = blk: {
const T = [10]u8;
break :blk struct {
array: T,
};
};
```
Which ended up being a similar, smaller problem. The former test case
will require a similar solution in the implementation of comptime
function calls - checking if the result of the function call is a struct
or union, and using the child `Sema` before it is destroyed to resolve
the fields.