e.g. `x86_64-windows.win10...win11_dt-gnu` -> `x86_64-windows-gnu`
When the OS version is the default this is redundant with checking the
default in the standard library.
This safety check was completely broken; it triggered unchecked illegal
behavior *in order to implement the safety check*. You definitely can't
do that! Instead, we must explicitly check the boundaries. This is a
tiny bit fiddly, because we need to make sure we do floating-point
rounding in the correct direction, and also handle the fact that the
operation truncates so the boundary works differently for min vs max.
Instead of implementing this safety check in Sema, there are now
dedicated AIR instructions for safety-checked intfromfloat (two
instructions; which one is used depends on the float mode). Currently,
no backend directly implements them; instead, a `Legalize.Feature` is
added which expands the safety check, and this feature is enabled for
all backends we currently test, including the LLVM backend.
The `u0` case is still handled in Sema, because Sema needs to check for
that anyway due to the comptime-known result. The old safety check here
was also completely broken and has therefore been rewritten. In that
case, we just check for 'abs(input) < 1.0'.
I've added a bunch of test coverage for the boundary cases of
`@intFromFloat`, both for successes (in `test/behavior/cast.zig`) and
failures (in `test/cases/safety/`).
Resolves: #24161
* Sema: allow binary operations and boolean not on vectors of bool
* langref: Clarify use of operators on vectors (`and` and `or` not allowed)
closes#24093
Pointers to thread-local variables do not have their addresses known
until runtime, so it is nonsensical for them to be comptime-known. There
was logic in the compiler which was essentially attempting to treat them
as not being comptime-known despite the pointer being an interned value.
This was a bit of a mess, the check was frequent enough to actually show
up in compiler profiles, and it was very awkward for backends to deal
with, because they had to grapple with the fact that a "constant" they
were lowering might actually require runtime operations.
So, instead, do not consider these pointers to be comptime-known in
*any* way. Never intern such a pointer; instead, when the address of a
threadlocal is taken, emit an AIR instruction which computes the pointer
at runtime. This avoids lots of special handling for TLVs across
basically all codegen backends; of all somewhat-functional backends, the
only one which wasn't improved by this change was the LLVM backend,
because LLVM pretends this complexity around threadlocals doesn't exist.
This change simplifies Sema and codegen, avoids a potential source of
bugs, and potentially improves Sema performance very slightly by
avoiding a non-trivial check on a hot path.
I only wanted to fix a bug originally, but this logic was kind of a
rat's nest. But now... okay, it still *is*, but it's now a slightly more
navigable nest, with cute little signs occasionally, painted by adorable
rats desparately trying to follow the specification.
Hopefully #3806 comes along at some point to simplify this logic a
little.
Resolves: #23139