There is one minor language change here, which is that comparisons of
the form `comptime_inf < runtime_f32` have their results comptime-known.
This is consistent with comparisons against comptime NaN for instance,
which are always comptime known. A corresponding behavior test is added.
This fixes a bug with int comparison elision which my previous commit
somehow triggered. `Sema.compareIntsOnlyPossibleResult` is much cleaner
now!
PR #20927 made some improvements to the `binarySearch` API, but one
change I found surprising was the relationship between the left-hand and
right-hand parameters of `compareFn` was inverted. This is different
from how comparison functions typically behave, both in other parts of
Zig (e.g. `std.math.order`) and in other languages (e.g. C's `bsearch`).
Unless a strong reason can be identified and documented for doing
otherwise, I think it'll be better to stick with convention.
While writing this patch and changing things back to the way they were,
the predicates of `lowerBound` and `upperBound` seemed to be the only
areas that benefited from the inversion. I don't think that benefit is
worth the cost, personally. Calling `Order.invert()` in the predicates
accomplishes the same goal.
0ecc6332b4eb1ced547ffa38f57471134aaa4d13 improved things for thumb2, but thumb1
has a much smaller permissible instruction set. This commit makes that work.
I've seen implementations in the wild that send 'Upgrade: WebSocket',
which currently fails the handshake.
From https://datatracker.ietf.org/doc/html/rfc6455:
"If the response lacks an |Upgrade| header field or the |Upgrade| header
field contains a value that is not an ASCII case-insensitive match for
the value "websocket", the client MUST _Fail the WebSocket Connection_."
The previous API used `std.testing.fuzzInput(.{})` however that has the
problem that users call it multiple times incorrectly, and there might
be work happening to obtain the corpus which should not be included in
coverage analysis, and which must not slow down iteration speed.
This commit restructures it so that the main loop lives in libfuzzer and
directly calls the "test one" function.
In this commit I was a little too aggressive because I made the test
runner export `fuzzer_one` for this purpose. This was motivated by
performance, but it causes "exported symbol collision: fuzzer_one" to
occur when more than one fuzz test is provided.
There are three ways to solve this:
1. libfuzzer needs to be passed a function pointer instead. Possible
performance downside.
2. build runner needs to build a different process per fuzz test.
Potentially wasteful and unclear how to isolate them.
3. test runner needs to perform a relocation at runtime to point the
function call to the relevant unit test. Portability issues and
dubious performance gains.