Instead of hardcoding a call to defaultRandomSeed() use the customizable
std.options.cryptoRandomSeed() like in the rest of the function.
Closes#19943.
In #22522 I said:
> RC="zig rc" will now work in combination with zig cc and CMake. Here's an example of cross-compiling a simple Windows GUI CMake project
>
> $ RC="zig rc" CC="zig cc --target=x86_64-windows-gnu" cmake .. -DCMAKE_SYSTEM_NAME=Windows -G Ninja
However, I didn't realize that the time that this only works because of the `-G Ninja` part. When not using Ninja as the build tool, CMake adds a workaround for 'very long lists of object files' where it takes all object files and runs them through `ar` to combine them into one archive:
4a11fd8dde/Modules/Platform/Windows-GNU.cmake (L141-L158)
This is a problem for the Windows resource use-case, because `ar` doesn't know how to deal with `.res` files and so this object combining step fails with:
unknown file type: foo.rc.res
Only the linker knows what to do with .res files (since it has its own `.res` -> `.obj` ('cvtres') conversion mechanism). So, when using Ninja, this object file combining step is skipped and the .res file gets passed to the linker and everyone is happy.
Note: When CMake thinks that its using `windres` as the Windows resource compiler, it will pass `-O coff` to windres which causes it to output a COFF object file instead of a `.res` file, which means that the `ar` step can succeed because it's only working on actual object files.
---
This commit gives `zig rc` the ability to output COFF object files directly when `/:output-format coff` is provided as an argument. This effectively matches what happens when CMake uses `windres` for resource compilation, but requires the argument to be provided explicitly.
So, after this change, the following CMake cross-compilation use case will work, even when not using Ninja as the generator:
RC="zig rc /:output-format coff" CC="zig cc --target=x86_64-windows-gnu" cmake .. -DCMAKE_SYSTEM_NAME=Windows
This can also be extended to ELF later as it means roughly the same thing there.
This addresses the main issue in #21721 but as I don't have a macOS machine to
do further testing on, I can't confirm whether zig cc is able to pass the entire
cgo test suite after this commit. It can, however, cross-compile a basic program
that uses cgo to x86_64-macos-none which previously failed due to lack of -x
support. Unlike previously, the resulting symbol table does not contain local
symbols (such as C static functions).
I believe this satisfies the related donor bounty: https://ziglang.org/news/second-donor-bounty
* Adds startTupleField/startStructField, makes pattern in print targets less verbose
* Makes some enums into strings
* Start/finish renamed to begin/end
I feel bad changing this, but I don't know why I named them this way in the first place.
Begin/end is consistent with the json API, and with other APIs in the wild that follow this pattern.
Better to change now than later.
When runtime safety is turned on, `Ed25519.fromSecretKey()` can
currently hit an assertion if the format of the secret key is
invalid.
Return an error instead, so that applications can recover.
Unfortunately some duplicate files must remain in lib/libc/wasi/libc-top-half
because they include internal headers *in the same directory* which have edits
relative to upstream musl. Because C is an amazing language, there is no way to
make it so that e.g. upstream musl's src/stdio/fputc.c includes wasi-libc's
src/stdio/putc.h instead of the upstream putc.h. The preprocessor always
searches the current directory first for quote includes.
Anyway, this still takes us from 2.9M to 1.4M for the combination of
lib/libc/wasi and lib/libc/include/wasm-wasi-musl, so I still call it a win.
`EACCES` is returned if the file mode bit (i.e., user/group/other rwx
bits) disallow access. `EPERM` is returned if something else denies
access (immutable bit, SELinux, capabilities, etc). This somewhat subtle
no-access distinction is part of POSIX. For now map both to
`error.PermissionDenied` to keep the error signature unchanged. See
duopoly.
This PR is effecitvely an update/simplification of PR #19193.
Tested locally with an immutable file.
Fixes#22733 and #19162.
- allow `-fsanitize-coverage-trace-pc-guard` to be used on its own without enabling the fuzzer.
(note that previouly, while the flag was only active when fuzzing, the fuzzer itself doesn't use it, and the code will not link as is.)
- add stub functions in the fuzzer to link with instrumented C code (previously fuzzed tests failed to link if they were calling into C):
while the zig compile unit uses a custom `EmitOptions.Coverage` with features disabled,
the C code is built calling into the clang driver with "-fsanitize=fuzzer-no-link" that automatically enables the default features.
(see de06978ebc/clang/lib/Driver/SanitizerArgs.cpp (L587))
- emit `-fsanitize-coverage=trace-pc-guard` instead of `-Xclang -fsanitize-coverage-trace-pc-guard` so that edge coverrage is enabled by clang driver. (previously, it was enabled only because the fuzzer was)