We have no control over memory usage on arbitrary systems in the wild. But we
would still like to get the warnings so we can adjust the values based on
observations in the official ZSF CI.
Closes#23254.
Closes#23638.
This commit introduces a new flag to generate a new Zig project using
`zig init` without comments for users who are already familiar with the
Zig build system.
Additionally, the generated files are now different. Previously we would
generate a set of files that defined a static library and an executable,
which real-life experience has shown to cause confusion to newcomers.
The new template generates one Zig module and one executable both in
order to accommodate the two most common use cases, but also to suggest
that a library could use a CLI tool (e.g. a parser library could use a
CLI tool that provides syntax checking) and vice-versa a CLI tool might
want to expose its core functionality as a Zig module.
All references to C interoperability are removed from the template under
the assumption that if you're tall enough to do C interop, you're also
tall enough to find your way around the build system. Experienced users
will still be able to use the current template and adapt it with minimal
changes in order to perform more advanced operations. As an example, one
only needs to change `b.addExecutable` to `b.addLibrary` to switch from
generating an executable to a dynamic (or static) library.
`castTruncatedData` was a poorly worded error (all shrinking casts
"truncate bits", it's just that we assume those bits to be zext/sext of
the other bits!), and `negativeToUnsigned` was a pointless distinction
which forced the compiler to emit worse code (since two separate safety
checks were required for casting e.g. 'i32' to 'u16') and wasn't even
implemented correctly. This commit combines those safety panics into one
function, `integerOutOfBounds`. The name maybe isn't perfect, but that's
not hugely important; what matters is the new default message, which is
clearer than the old ones: "integer does not fit in destination type".
This defines a WinMain() function that can be potentially problematic when it
isn't wanted. If we add back support for this library in the future, it should
be built separately from mingw32.lib and on demand.
Pointers to thread-local variables do not have their addresses known
until runtime, so it is nonsensical for them to be comptime-known. There
was logic in the compiler which was essentially attempting to treat them
as not being comptime-known despite the pointer being an interned value.
This was a bit of a mess, the check was frequent enough to actually show
up in compiler profiles, and it was very awkward for backends to deal
with, because they had to grapple with the fact that a "constant" they
were lowering might actually require runtime operations.
So, instead, do not consider these pointers to be comptime-known in
*any* way. Never intern such a pointer; instead, when the address of a
threadlocal is taken, emit an AIR instruction which computes the pointer
at runtime. This avoids lots of special handling for TLVs across
basically all codegen backends; of all somewhat-functional backends, the
only one which wasn't improved by this change was the LLVM backend,
because LLVM pretends this complexity around threadlocals doesn't exist.
This change simplifies Sema and codegen, avoids a potential source of
bugs, and potentially improves Sema performance very slightly by
avoiding a non-trivial check on a hot path.
In a compiler built with debug extensions, pass `--debug-incremental` to
spawn the "incremental debug server". This is a TCP server exposing a
REPL which allows querying a bunch of compiler state, some of which is
stored only when that flag is passed. Eventually, this will probably
move into `std.zig.Server`/`std.zig.Client`, but this is easier to work
with right now. The easiest way to interact with the server is `telnet`.
The doc comment here agreed with the implementation, but not with *any*
`Step` which populates a `GeneratedFile`, where they are treated as
cwd-relative. This is the obvious correct choice, because these paths
usually come from joining onto a cache root, and those are cwd-relative
if not absolute.
This was a pre-existing bug, but #23836 caused it to trigger more often,
because the compiler now commonly passes the local cache directory to
the build runner process as a relative path where it was previously an
absolute path.
Resolves: #23954