Cleaned up RISC-V instruction creation, added 32-bit immediates (#6077)

* Implemented all R-type arithmetic/logical instructions

* Implemented all I-type arithmetic/logical instructions

* Implemented all load and store instructions

* Implemented all of RV64I except FENCE
This commit is contained in:
Eleanor Bartle 2020-08-18 14:30:00 +10:00 committed by GitHub
parent 3cc1f8b624
commit fa8935426b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 387 additions and 99 deletions

View File

@ -1113,11 +1113,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
try self.code.append(0xcc); // int3
},
.riscv64 => {
const full = @bitCast(u32, instructions.CallBreak{
.mode = @enumToInt(instructions.CallBreak.Mode.ebreak),
});
mem.writeIntLittle(u32, try self.code.addManyAsArray(4), full);
mem.writeIntLittle(u32, try self.code.addManyAsArray(4), Instruction.ebreak.toU32());
},
else => return self.fail(src, "TODO implement @breakpoint() for {}", .{self.target.cpu.arch}),
}
@ -1193,12 +1189,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
const got_addr = @intCast(u32, got.p_vaddr + func.owner_decl.link.elf.offset_table_index * ptr_bytes);
try self.genSetReg(inst.base.src, .ra, .{ .memory = got_addr });
const jalr = instructions.Jalr{
.rd = Register.ra.id(),
.rs1 = Register.ra.id(),
.offset = 0,
};
mem.writeIntLittle(u32, try self.code.addManyAsArray(4), @bitCast(u32, jalr));
mem.writeIntLittle(u32, try self.code.addManyAsArray(4), Instruction.jalr(.ra, 0, .ra).toU32());
} else {
return self.fail(inst.base.src, "TODO implement calling bitcasted functions", .{});
}
@ -1255,12 +1246,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
try self.exitlude_jump_relocs.append(self.gpa, self.code.items.len - 4);
},
.riscv64 => {
const jalr = instructions.Jalr{
.rd = Register.zero.id(),
.rs1 = Register.ra.id(),
.offset = 0,
};
mem.writeIntLittle(u32, try self.code.addManyAsArray(4), @bitCast(u32, jalr));
mem.writeIntLittle(u32, try self.code.addManyAsArray(4), Instruction.jalr(.zero, 0, .ra).toU32());
},
else => return self.fail(src, "TODO implement return for {}", .{self.target.cpu.arch}),
}
@ -1512,11 +1498,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
}
if (mem.eql(u8, inst.asm_source, "ecall")) {
const full = @bitCast(u32, instructions.CallBreak{
.mode = @enumToInt(instructions.CallBreak.Mode.ecall),
});
mem.writeIntLittle(u32, try self.code.addManyAsArray(4), full);
mem.writeIntLittle(u32, try self.code.addManyAsArray(4), Instruction.ecall.toU32());
} else {
return self.fail(inst.base.src, "TODO implement support for more riscv64 assembly instructions", .{});
}
@ -1723,36 +1705,17 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
.immediate => |unsigned_x| {
const x = @bitCast(i64, unsigned_x);
if (math.minInt(i12) <= x and x <= math.maxInt(i12)) {
const instruction = @bitCast(u32, instructions.Addi{
.mode = @enumToInt(instructions.Addi.Mode.addi),
.imm = @truncate(i12, x),
.rs1 = Register.zero.id(),
.rd = reg.id(),
});
mem.writeIntLittle(u32, try self.code.addManyAsArray(4), instruction);
mem.writeIntLittle(u32, try self.code.addManyAsArray(4), Instruction.addi(reg, .zero, @truncate(i12, x)).toU32());
return;
}
if (math.minInt(i32) <= x and x <= math.maxInt(i32)) {
const split = @bitCast(packed struct {
low12: i12,
up20: i20,
}, @truncate(i32, x));
if (split.low12 < 0) return self.fail(src, "TODO support riscv64 genSetReg i32 immediates with 12th bit set to 1", .{});
const lo12 = @truncate(i12, x);
const carry: i32 = if (lo12 < 0) 1 else 0;
const hi20 = @truncate(i20, (x >> 12) +% carry);
const lui = @bitCast(u32, instructions.Lui{
.imm = split.up20,
.rd = reg.id(),
});
mem.writeIntLittle(u32, try self.code.addManyAsArray(4), lui);
const addi = @bitCast(u32, instructions.Addi{
.mode = @enumToInt(instructions.Addi.Mode.addi),
.imm = @truncate(i12, split.low12),
.rs1 = reg.id(),
.rd = reg.id(),
});
mem.writeIntLittle(u32, try self.code.addManyAsArray(4), addi);
// TODO: add test case for 32-bit immediate
mem.writeIntLittle(u32, try self.code.addManyAsArray(4), Instruction.lui(reg, hi20).toU32());
mem.writeIntLittle(u32, try self.code.addManyAsArray(4), Instruction.addi(reg, reg, lo12).toU32());
return;
}
// li rd, immediate
@ -1764,14 +1727,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
// If the type is a pointer, it means the pointer address is at this memory location.
try self.genSetReg(src, reg, .{ .immediate = addr });
const ld = @bitCast(u32, instructions.Load{
.mode = @enumToInt(instructions.Load.Mode.ld),
.rs1 = reg.id(),
.rd = reg.id(),
.offset = 0,
});
mem.writeIntLittle(u32, try self.code.addManyAsArray(4), ld);
mem.writeIntLittle(u32, try self.code.addManyAsArray(4), Instruction.ld(reg, 0, reg).toU32());
// LOAD imm=[i12 offset = 0], rs1 =
// return self.fail("TODO implement genSetReg memory for riscv64");

View File

@ -1,50 +1,387 @@
const std = @import("std");
const DW = std.dwarf;
pub const instructions = struct {
pub const CallBreak = packed struct {
pub const Mode = packed enum(u12) { ecall, ebreak };
opcode: u7 = 0b1110011,
unused1: u5 = 0,
unused2: u3 = 0,
unused3: u5 = 0,
mode: u12, //: Mode
};
// I-type
pub const Addi = packed struct {
pub const Mode = packed enum(u3) { addi = 0b000, slti = 0b010, sltiu = 0b011, xori = 0b100, ori = 0b110, andi = 0b111 };
opcode: u7 = 0b0010011,
// TODO: this is only tagged to facilitate the monstrosity.
// Once packed structs work make it packed.
pub const Instruction = union(enum) {
R: packed struct {
opcode: u7,
rd: u5,
mode: u3, //: Mode
funct3: u3,
rs1: u5,
imm: i12,
};
pub const Lui = packed struct {
opcode: u7 = 0b0110111,
rs2: u5,
funct7: u7,
},
I: packed struct {
opcode: u7,
rd: u5,
imm: i20,
};
// I_type
pub const Load = packed struct {
pub const Mode = packed enum(u3) { ld = 0b011, lwu = 0b110 };
opcode: u7 = 0b0000011,
rd: u5,
mode: u3, //: Mode
funct3: u3,
rs1: u5,
offset: i12,
};
// I-type
pub const Jalr = packed struct {
opcode: u7 = 0b1100111,
rd: u5,
mode: u3 = 0,
imm0_11: u12,
},
S: packed struct {
opcode: u7,
imm0_4: u5,
funct3: u3,
rs1: u5,
offset: i12,
};
rs2: u5,
imm5_11: u7,
},
B: packed struct {
opcode: u7,
imm11: u1,
imm1_4: u4,
funct3: u3,
rs1: u5,
rs2: u5,
imm5_10: u6,
imm12: u1,
},
U: packed struct {
opcode: u7,
rd: u5,
imm12_31: u20,
},
J: packed struct {
opcode: u7,
rd: u5,
imm12_19: u8,
imm11: u1,
imm1_10: u10,
imm20: u1,
},
// TODO: once packed structs work we can remove this monstrosity.
pub fn toU32(self: Instruction) u32 {
return switch (self) {
.R => |v| @bitCast(u32, v),
.I => |v| @bitCast(u32, v),
.S => |v| @bitCast(u32, v),
.B => |v| @intCast(u32, v.opcode) + (@intCast(u32, v.imm11) << 7) + (@intCast(u32, v.imm1_4) << 8) + (@intCast(u32, v.funct3) << 12) + (@intCast(u32, v.rs1) << 15) + (@intCast(u32, v.rs2) << 20) + (@intCast(u32, v.imm5_10) << 25) + (@intCast(u32, v.imm12) << 31),
.U => |v| @bitCast(u32, v),
.J => |v| @bitCast(u32, v),
};
}
fn rType(op: u7, fn3: u3, fn7: u7, rd: Register, r1: Register, r2: Register) Instruction {
return Instruction{
.R = .{
.opcode = op,
.funct3 = fn3,
.funct7 = fn7,
.rd = @enumToInt(rd),
.rs1 = @enumToInt(r1),
.rs2 = @enumToInt(r2),
},
};
}
// RISC-V is all signed all the time -- convert immediates to unsigned for processing
fn iType(op: u7, fn3: u3, rd: Register, r1: Register, imm: i12) Instruction {
const umm = @bitCast(u12, imm);
return Instruction{
.I = .{
.opcode = op,
.funct3 = fn3,
.rd = @enumToInt(rd),
.rs1 = @enumToInt(r1),
.imm0_11 = umm,
},
};
}
fn sType(op: u7, fn3: u3, r1: Register, r2: Register, imm: i12) Instruction {
const umm = @bitCast(u12, imm);
return Instruction{
.S = .{
.opcode = op,
.funct3 = fn3,
.rs1 = @enumToInt(r1),
.rs2 = @enumToInt(r2),
.imm0_4 = @truncate(u5, umm),
.imm5_11 = @truncate(u7, umm >> 5),
},
};
}
// Use significance value rather than bit value, same for J-type
// -- less burden on callsite, bonus semantic checking
fn bType(op: u7, fn3: u3, r1: Register, r2: Register, imm: i13) Instruction {
const umm = @bitCast(u13, imm);
if (umm % 2 != 0) @panic("Internal error: misaligned branch target");
return Instruction{
.B = .{
.opcode = op,
.funct3 = fn3,
.rs1 = @enumToInt(r1),
.rs2 = @enumToInt(r2),
.imm1_4 = @truncate(u4, umm >> 1),
.imm5_10 = @truncate(u6, umm >> 5),
.imm11 = @truncate(u1, umm >> 11),
.imm12 = @truncate(u1, umm >> 12),
},
};
}
// We have to extract the 20 bits anyway -- let's not make it more painful
fn uType(op: u7, rd: Register, imm: i20) Instruction {
const umm = @bitCast(u20, imm);
return Instruction{
.U = .{
.opcode = op,
.rd = @enumToInt(rd),
.imm12_31 = umm,
},
};
}
fn jType(op: u7, rd: Register, imm: i21) Instruction {
const umm = @bitcast(u21, imm);
if (umm % 2 != 0) @panic("Internal error: misaligned jump target");
return Instruction{
.J = .{
.opcode = op,
.rd = @enumToInt(rd),
.imm1_10 = @truncate(u10, umm >> 1),
.imm11 = @truncate(u1, umm >> 1),
.imm12_19 = @truncate(u8, umm >> 12),
.imm20 = @truncate(u1, umm >> 20),
},
};
}
// The meat and potatoes. Arguments are in the order in which they would appear in assembly code.
// Arithmetic/Logical, Register-Register
pub fn add(rd: Register, r1: Register, r2: Register) Instruction {
return rType(0b0110011, 0b000, 0b0000000, rd, r1, r2);
}
pub fn sub(rd: Register, r1: Register, r2: Register) Instruction {
return rType(0b0110011, 0b000, 0b0100000, rd, r1, r2);
}
pub fn @"and"(rd: Register, r1: Register, r2: Register) Instruction {
return rType(0b0110011, 0b111, 0b0000000, rd, r1, r2);
}
pub fn @"or"(rd: Register, r1: Register, r2: Register) Instruction {
return rType(0b0110011, 0b110, 0b0000000, rd, r1, r2);
}
pub fn xor(rd: Register, r1: Register, r2: Register) Instruction {
return rType(0b0110011, 0b100, 0b0000000, rd, r1, r2);
}
pub fn sll(rd: Register, r1: Register, r2: Register) Instruction {
return rType(0b0110011, 0b001, 0b0000000, rd, r1, r2);
}
pub fn srl(rd: Register, r1: Register, r2: Register) Instruction {
return rType(0b0110011, 0b101, 0b0000000, rd, r1, r2);
}
pub fn sra(rd: Register, r1: Register, r2: Register) Instruction {
return rType(0b0110011, 0b101, 0b0100000, rd, r1, r2);
}
pub fn slt(rd: Register, r1: Register, r2: Register) Instruction {
return rType(0b0110011, 0b010, 0b0000000, rd, r1, r2);
}
pub fn sltu(rd: Register, r1: Register, r2: Register) Instruction {
return rType(0b0110011, 0b011, 0b0000000, rd, r1, r2);
}
// Arithmetic/Logical, Register-Register (32-bit)
pub fn addw(rd: Register, r1: Register, r2: Register) Instruction {
return rType(0b0111011, 0b000, rd, r1, r2);
}
pub fn subw(rd: Register, r1: Register, r2: Register) Instruction {
return rType(0b0111011, 0b000, 0b0100000, rd, r1, r2);
}
pub fn sllw(rd: Register, r1: Register, r2: Register) Instruction {
return rType(0b0111011, 0b001, 0b0000000, rd, r1, r2);
}
pub fn srlw(rd: Register, r1: Register, r2: Register) Instruction {
return rType(0b0111011, 0b101, 0b0000000, rd, r1, r2);
}
pub fn sraw(rd: Register, r1: Register, r2: Register) Instruction {
return rType(0b0111011, 0b101, 0b0100000, rd, r1, r2);
}
// Arithmetic/Logical, Register-Immediate
pub fn addi(rd: Register, r1: Register, imm: i12) Instruction {
return iType(0b0010011, 0b000, rd, r1, imm);
}
pub fn andi(rd: Register, r1: Register, imm: i12) Instruction {
return iType(0b0010011, 0b111, rd, r1, imm);
}
pub fn ori(rd: Register, r1: Register, imm: i12) Instruction {
return iType(0b0010011, 0b110, rd, r1, imm);
}
pub fn xori(rd: Register, r1: Register, imm: i12) Instruction {
return iType(0b0010011, 0b100, rd, r1, imm);
}
pub fn slli(rd: Register, r1: Register, shamt: u6) Instruction {
return iType(0b0010011, 0b001, rd, r1, shamt);
}
pub fn srli(rd: Register, r1: Register, shamt: u6) Instruction {
return iType(0b0010011, 0b101, rd, r1, shamt);
}
pub fn srai(rd: Register, r1: Register, shamt: u6) Instruction {
return iType(0b0010011, 0b101, rd, r1, (1 << 10) + shamt);
}
pub fn slti(rd: Register, r1: Register, imm: i12) Instruction {
return iType(0b0010011, 0b010, rd, r1, imm);
}
pub fn sltiu(rd: Register, r1: Register, imm: u12) Instruction {
return iType(0b0010011, 0b011, rd, r1, @bitCast(i12, imm));
}
// Arithmetic/Logical, Register-Immediate (32-bit)
pub fn addiw(rd: Register, r1: Register, imm: i12) Instruction {
return iType(0b0011011, 0b000, rd, r1, imm);
}
pub fn slliw(rd: Register, r1: Register, shamt: u5) Instruction {
return iType(0b0011011, 0b001, rd, r1, shamt);
}
pub fn srliw(rd: Register, r1: Register, shamt: u5) Instruction {
return iType(0b0011011, 0b101, rd, r1, shamt);
}
pub fn sraiw(rd: Register, r1: Register, shamt: u5) Instruction {
return iType(0b0011011, 0b101, rd, r1, (1 << 10) + shamt);
}
// Upper Immediate
pub fn lui(rd: Register, imm: i20) Instruction {
return uType(0b0110111, rd, imm);
}
pub fn auipc(rd: Register, imm: i20) Instruction {
return uType(0b0010111, rd, imm);
}
// Load
pub fn ld(rd: Register, offset: i12, base: Register) Instruction {
return iType(0b0000011, 0b011, rd, base, offset);
}
pub fn lw(rd: Register, offset: i12, base: Register) Instruction {
return iType(0b0000011, 0b010, rd, base, offset);
}
pub fn lwu(rd: Register, offset: i12, base: Register) Instruction {
return iType(0b0000011, 0b110, rd, base, offset);
}
pub fn lh(rd: Register, offset: i12, base: Register) Instruction {
return iType(0b0000011, 0b001, rd, base, offset);
}
pub fn lhu(rd: Register, offset: i12, base: Register) Instruction {
return iType(0b0000011, 0b101, rd, base, offset);
}
pub fn lb(rd: Register, offset: i12, base: Register) Instruction {
return iType(0b0000011, 0b000, rd, base, offset);
}
pub fn lbu(rd: Register, offset: i12, base: Register) Instruction {
return iType(0b0000011, 0b100, rd, base, offset);
}
// Store
pub fn sd(rs: Register, offset: i12, base: Register) Instruction {
return sType(0b0100011, 0b011, base, rs, offset);
}
pub fn sw(rs: Register, offset: i12, base: Register) Instruction {
return sType(0b0100011, 0b010, base, rs, offset);
}
pub fn sh(rs: Register, offset: i12, base: Register) Instruction {
return sType(0b0100011, 0b001, base, rs, offset);
}
pub fn sb(rs: Register, offset: i12, base: Register) Instruction {
return sType(0b0100011, 0b000, base, rs, offset);
}
// Fence
// TODO: implement fence
// Branch
pub fn beq(r1: Register, r2: Register, offset: u13) Instruction {
return bType(0b1100011, 0b000, r1, r2, offset);
}
pub fn bne(r1: Register, r2: Register, offset: u13) Instruction {
return bType(0b1100011, 0b001, r1, r2, offset);
}
pub fn blt(r1: Register, r2: Register, offset: u13) Instruction {
return bType(0b1100011, 0b100, r1, r2, offset);
}
pub fn bge(r1: Register, r2: Register, offset: u13) Instruction {
return bType(0b1100011, 0b101, r1, r2, offset);
}
pub fn bltu(r1: Register, r2: Register, offset: u13) Instruction {
return bType(0b1100011, 0b110, r1, r2, offset);
}
pub fn bgeu(r1: Register, r2: Register, offset: u13) Instruction {
return bType(0b1100011, 0b111, r1, r2, offset);
}
// Jump
pub fn jal(link: Register, offset: i21) Instruction {
return jType(0b1101111, link, offset);
}
pub fn jalr(link: Register, offset: i12, base: Register) Instruction {
return iType(0b1100111, 0b000, link, base, offset);
}
// System
pub const ecall = iType(0b1110011, 0b000, .zero, .zero, 0x000);
pub const ebreak = iType(0b1110011, 0b000, .zero, .zero, 0x001);
};
// zig fmt: off
pub const RawRegister = enum(u8) {
pub const RawRegister = enum(u5) {
x0, x1, x2, x3, x4, x5, x6, x7,
x8, x9, x10, x11, x12, x13, x14, x15,
x16, x17, x18, x19, x20, x21, x22, x23,
@ -55,7 +392,7 @@ pub const RawRegister = enum(u8) {
}
};
pub const Register = enum(u8) {
pub const Register = enum(u5) {
// 64 bit registers
zero, // zero
ra, // return address. caller saved
@ -76,11 +413,6 @@ pub const Register = enum(u8) {
return null;
}
/// Returns the register's id.
pub fn id(self: @This()) u5 {
return @truncate(u5, @enumToInt(self));
}
/// Returns the index into `callee_preserved_regs`.
pub fn allocIndex(self: Register) ?u4 {
inline for(callee_preserved_regs) |cpreg, i| {
@ -90,7 +422,7 @@ pub const Register = enum(u8) {
}
pub fn dwarfLocOp(reg: Register) u8 {
return @enumToInt(reg) + DW.OP_reg0;
return @as(u8, @enumToInt(reg)) + DW.OP_reg0;
}
};