diff --git a/lib/std/math/float.zig b/lib/std/math/float.zig index 72c7f086ac..1e44778576 100644 --- a/lib/std/math/float.zig +++ b/lib/std/math/float.zig @@ -3,19 +3,19 @@ const assert = std.debug.assert; const expect = std.testing.expect; /// Creates a raw "1.0" mantissa for floating point type T. Used to dedupe f80 logic. -fn mantissaOne(comptime T: type) comptime_int { +inline fn mantissaOne(comptime T: type) comptime_int { return if (@typeInfo(T).Float.bits == 80) 1 << floatFractionalBits(T) else 0; } /// Creates floating point type T from an unbiased exponent and raw mantissa. -fn reconstructFloat(comptime T: type, exponent: comptime_int, mantissa: comptime_int) T { +inline fn reconstructFloat(comptime T: type, exponent: comptime_int, mantissa: comptime_int) T { const TBits = std.meta.Int(.unsigned, @bitSizeOf(T)); const biased_exponent = @as(TBits, exponent + floatExponentMax(T)); return @bitCast(T, (biased_exponent << floatMantissaBits(T)) | @as(TBits, mantissa)); } /// Returns the number of bits in the exponent of floating point type T. -pub fn floatExponentBits(comptime T: type) comptime_int { +pub inline fn floatExponentBits(comptime T: type) comptime_int { assert(@typeInfo(T) == .Float); return switch (@typeInfo(T).Float.bits) { @@ -29,7 +29,7 @@ pub fn floatExponentBits(comptime T: type) comptime_int { } /// Returns the number of bits in the mantissa of floating point type T. -pub fn floatMantissaBits(comptime T: type) comptime_int { +pub inline fn floatMantissaBits(comptime T: type) comptime_int { assert(@typeInfo(T) == .Float); return switch (@typeInfo(T).Float.bits) { @@ -43,7 +43,7 @@ pub fn floatMantissaBits(comptime T: type) comptime_int { } /// Returns the number of fractional bits in the mantissa of floating point type T. -pub fn floatFractionalBits(comptime T: type) comptime_int { +pub inline fn floatFractionalBits(comptime T: type) comptime_int { assert(@typeInfo(T) == .Float); // standard IEEE floats have an implicit 0.m or 1.m integer part @@ -61,39 +61,39 @@ pub fn floatFractionalBits(comptime T: type) comptime_int { /// Returns the minimum exponent that can represent /// a normalised value in floating point type T. -pub fn floatExponentMin(comptime T: type) comptime_int { +pub inline fn floatExponentMin(comptime T: type) comptime_int { return -floatExponentMax(T) + 1; } /// Returns the maximum exponent that can represent /// a normalised value in floating point type T. -pub fn floatExponentMax(comptime T: type) comptime_int { +pub inline fn floatExponentMax(comptime T: type) comptime_int { return (1 << (floatExponentBits(T) - 1)) - 1; } /// Returns the smallest subnormal number representable in floating point type T. -pub fn floatTrueMin(comptime T: type) T { +pub inline fn floatTrueMin(comptime T: type) T { return reconstructFloat(T, floatExponentMin(T) - 1, 1); } /// Returns the smallest normal number representable in floating point type T. -pub fn floatMin(comptime T: type) T { +pub inline fn floatMin(comptime T: type) T { return reconstructFloat(T, floatExponentMin(T), mantissaOne(T)); } /// Returns the largest normal number representable in floating point type T. -pub fn floatMax(comptime T: type) T { +pub inline fn floatMax(comptime T: type) T { const all1s_mantissa = (1 << floatMantissaBits(T)) - 1; return reconstructFloat(T, floatExponentMax(T), all1s_mantissa); } /// Returns the machine epsilon of floating point type T. -pub fn floatEps(comptime T: type) T { +pub inline fn floatEps(comptime T: type) T { return reconstructFloat(T, -floatFractionalBits(T), mantissaOne(T)); } /// Returns the value inf for floating point type T. -pub fn inf(comptime T: type) T { +pub inline fn inf(comptime T: type) T { return reconstructFloat(T, floatExponentMax(T) + 1, mantissaOne(T)); } diff --git a/lib/std/math/isinf.zig b/lib/std/math/isinf.zig index a26332411f..ac30470f31 100644 --- a/lib/std/math/isinf.zig +++ b/lib/std/math/isinf.zig @@ -3,7 +3,7 @@ const math = std.math; const expect = std.testing.expect; /// Returns whether x is an infinity, ignoring sign. -pub fn isInf(x: anytype) bool { +pub inline fn isInf(x: anytype) bool { const T = @TypeOf(x); const TBits = std.meta.Int(.unsigned, @typeInfo(T).Float.bits); const remove_sign = ~@as(TBits, 0) >> 1; @@ -11,12 +11,12 @@ pub fn isInf(x: anytype) bool { } /// Returns whether x is an infinity with a positive sign. -pub fn isPositiveInf(x: anytype) bool { +pub inline fn isPositiveInf(x: anytype) bool { return x == math.inf(@TypeOf(x)); } /// Returns whether x is an infinity with a negative sign. -pub fn isNegativeInf(x: anytype) bool { +pub inline fn isNegativeInf(x: anytype) bool { return x == -math.inf(@TypeOf(x)); }