mirror of
https://github.com/ziglang/zig.git
synced 2026-01-21 06:45:24 +00:00
M:N threading
* add std.atomic.QueueMpsc.isEmpty * make std.debug.global_allocator thread-safe * std.event.Loop: now you have to choose between - initSingleThreaded - initMultiThreaded * std.event.Loop multiplexes coroutines onto kernel threads * Remove std.event.Loop.stop. Instead the event loop run() function returns once there are no pending coroutines. * fix crash in ir.cpp for calling methods under some conditions * small progress self-hosted compiler, analyzing top level declarations * Introduce std.event.Lock for synchronizing coroutines * introduce std.event.Locked(T) for data that only 1 coroutine should modify at once. * make the self hosted compiler use multi threaded event loop * make std.heap.DirectAllocator thread-safe See #174 TODO: * call sched_getaffinity instead of hard coding thread pool size 4 * support for Windows and MacOS * #1194 * #1197
This commit is contained in:
parent
d8295c1889
commit
eb326e1553
@ -384,7 +384,8 @@ fn buildOutputType(allocator: *Allocator, args: []const []const u8, out_type: Mo
|
||||
const zig_lib_dir = introspect.resolveZigLibDir(allocator) catch os.exit(1);
|
||||
defer allocator.free(zig_lib_dir);
|
||||
|
||||
var loop = try event.Loop.init(allocator);
|
||||
var loop: event.Loop = undefined;
|
||||
try loop.initMultiThreaded(allocator);
|
||||
|
||||
var module = try Module.create(
|
||||
&loop,
|
||||
@ -493,8 +494,6 @@ async fn processBuildEvents(module: *Module, watch: bool) void {
|
||||
switch (build_event) {
|
||||
Module.Event.Ok => {
|
||||
std.debug.warn("Build succeeded\n");
|
||||
// for now we stop after 1
|
||||
module.loop.stop();
|
||||
return;
|
||||
},
|
||||
Module.Event.Error => |err| {
|
||||
|
||||
@ -2,6 +2,7 @@ const std = @import("std");
|
||||
const os = std.os;
|
||||
const io = std.io;
|
||||
const mem = std.mem;
|
||||
const Allocator = mem.Allocator;
|
||||
const Buffer = std.Buffer;
|
||||
const llvm = @import("llvm.zig");
|
||||
const c = @import("c.zig");
|
||||
@ -13,6 +14,7 @@ const ArrayList = std.ArrayList;
|
||||
const errmsg = @import("errmsg.zig");
|
||||
const ast = std.zig.ast;
|
||||
const event = std.event;
|
||||
const assert = std.debug.assert;
|
||||
|
||||
pub const Module = struct {
|
||||
loop: *event.Loop,
|
||||
@ -81,6 +83,8 @@ pub const Module = struct {
|
||||
link_out_file: ?[]const u8,
|
||||
events: *event.Channel(Event),
|
||||
|
||||
exported_symbol_names: event.Locked(Decl.Table),
|
||||
|
||||
// TODO handle some of these earlier and report them in a way other than error codes
|
||||
pub const BuildError = error{
|
||||
OutOfMemory,
|
||||
@ -232,6 +236,7 @@ pub const Module = struct {
|
||||
.test_name_prefix = null,
|
||||
.emit_file_type = Emit.Binary,
|
||||
.link_out_file = null,
|
||||
.exported_symbol_names = event.Locked(Decl.Table).init(loop, Decl.Table.init(loop.allocator)),
|
||||
});
|
||||
}
|
||||
|
||||
@ -272,38 +277,91 @@ pub const Module = struct {
|
||||
return;
|
||||
};
|
||||
await (async self.events.put(Event.Ok) catch unreachable);
|
||||
// for now we stop after 1
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
async fn addRootSrc(self: *Module) !void {
|
||||
const root_src_path = self.root_src_path orelse @panic("TODO handle null root src path");
|
||||
// TODO async/await os.path.real
|
||||
const root_src_real_path = os.path.real(self.a(), root_src_path) catch |err| {
|
||||
try printError("unable to get real path '{}': {}", root_src_path, err);
|
||||
return err;
|
||||
};
|
||||
errdefer self.a().free(root_src_real_path);
|
||||
|
||||
// TODO async/await readFileAlloc()
|
||||
const source_code = io.readFileAlloc(self.a(), root_src_real_path) catch |err| {
|
||||
try printError("unable to open '{}': {}", root_src_real_path, err);
|
||||
return err;
|
||||
};
|
||||
errdefer self.a().free(source_code);
|
||||
|
||||
var tree = try std.zig.parse(self.a(), source_code);
|
||||
defer tree.deinit();
|
||||
var parsed_file = ParsedFile{
|
||||
.tree = try std.zig.parse(self.a(), source_code),
|
||||
.realpath = root_src_real_path,
|
||||
};
|
||||
errdefer parsed_file.tree.deinit();
|
||||
|
||||
//var it = tree.root_node.decls.iterator();
|
||||
//while (it.next()) |decl_ptr| {
|
||||
// const decl = decl_ptr.*;
|
||||
// switch (decl.id) {
|
||||
// ast.Node.Comptime => @panic("TODO"),
|
||||
// ast.Node.VarDecl => @panic("TODO"),
|
||||
// ast.Node.UseDecl => @panic("TODO"),
|
||||
// ast.Node.FnDef => @panic("TODO"),
|
||||
// ast.Node.TestDecl => @panic("TODO"),
|
||||
// else => unreachable,
|
||||
// }
|
||||
//}
|
||||
const tree = &parsed_file.tree;
|
||||
|
||||
// create empty struct for it
|
||||
const decls = try Scope.Decls.create(self.a(), null);
|
||||
errdefer decls.destroy();
|
||||
|
||||
var it = tree.root_node.decls.iterator(0);
|
||||
while (it.next()) |decl_ptr| {
|
||||
const decl = decl_ptr.*;
|
||||
switch (decl.id) {
|
||||
ast.Node.Id.Comptime => @panic("TODO"),
|
||||
ast.Node.Id.VarDecl => @panic("TODO"),
|
||||
ast.Node.Id.FnProto => {
|
||||
const fn_proto = @fieldParentPtr(ast.Node.FnProto, "base", decl);
|
||||
|
||||
const name = if (fn_proto.name_token) |name_token| tree.tokenSlice(name_token) else {
|
||||
@panic("TODO add compile error");
|
||||
//try self.addCompileError(
|
||||
// &parsed_file,
|
||||
// fn_proto.fn_token,
|
||||
// fn_proto.fn_token + 1,
|
||||
// "missing function name",
|
||||
//);
|
||||
continue;
|
||||
};
|
||||
|
||||
const fn_decl = try self.a().create(Decl.Fn{
|
||||
.base = Decl{
|
||||
.id = Decl.Id.Fn,
|
||||
.name = name,
|
||||
.visib = parseVisibToken(tree, fn_proto.visib_token),
|
||||
.resolution = Decl.Resolution.Unresolved,
|
||||
},
|
||||
.value = Decl.Fn.Val{ .Unresolved = {} },
|
||||
.fn_proto = fn_proto,
|
||||
});
|
||||
errdefer self.a().destroy(fn_decl);
|
||||
|
||||
// TODO make this parallel
|
||||
try await try async self.addTopLevelDecl(tree, &fn_decl.base);
|
||||
},
|
||||
ast.Node.Id.TestDecl => @panic("TODO"),
|
||||
else => unreachable,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
async fn addTopLevelDecl(self: *Module, tree: *ast.Tree, decl: *Decl) !void {
|
||||
const is_export = decl.isExported(tree);
|
||||
|
||||
{
|
||||
const exported_symbol_names = await try async self.exported_symbol_names.acquire();
|
||||
defer exported_symbol_names.release();
|
||||
|
||||
if (try exported_symbol_names.value.put(decl.name, decl)) |other_decl| {
|
||||
@panic("TODO report compile error");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn link(self: *Module, out_file: ?[]const u8) !void {
|
||||
@ -350,3 +408,172 @@ fn printError(comptime format: []const u8, args: ...) !void {
|
||||
const out_stream = &stderr_file_out_stream.stream;
|
||||
try out_stream.print(format, args);
|
||||
}
|
||||
|
||||
fn parseVisibToken(tree: *ast.Tree, optional_token_index: ?ast.TokenIndex) Visib {
|
||||
if (optional_token_index) |token_index| {
|
||||
const token = tree.tokens.at(token_index);
|
||||
assert(token.id == Token.Id.Keyword_pub);
|
||||
return Visib.Pub;
|
||||
} else {
|
||||
return Visib.Private;
|
||||
}
|
||||
}
|
||||
|
||||
pub const Scope = struct {
|
||||
id: Id,
|
||||
parent: ?*Scope,
|
||||
|
||||
pub const Id = enum {
|
||||
Decls,
|
||||
Block,
|
||||
};
|
||||
|
||||
pub const Decls = struct {
|
||||
base: Scope,
|
||||
table: Decl.Table,
|
||||
|
||||
pub fn create(a: *Allocator, parent: ?*Scope) !*Decls {
|
||||
const self = try a.create(Decls{
|
||||
.base = Scope{
|
||||
.id = Id.Decls,
|
||||
.parent = parent,
|
||||
},
|
||||
.table = undefined,
|
||||
});
|
||||
errdefer a.destroy(self);
|
||||
|
||||
self.table = Decl.Table.init(a);
|
||||
errdefer self.table.deinit();
|
||||
|
||||
return self;
|
||||
}
|
||||
|
||||
pub fn destroy(self: *Decls) void {
|
||||
self.table.deinit();
|
||||
self.table.allocator.destroy(self);
|
||||
self.* = undefined;
|
||||
}
|
||||
};
|
||||
|
||||
pub const Block = struct {
|
||||
base: Scope,
|
||||
};
|
||||
};
|
||||
|
||||
pub const Visib = enum {
|
||||
Private,
|
||||
Pub,
|
||||
};
|
||||
|
||||
pub const Decl = struct {
|
||||
id: Id,
|
||||
name: []const u8,
|
||||
visib: Visib,
|
||||
resolution: Resolution,
|
||||
|
||||
pub const Table = std.HashMap([]const u8, *Decl, mem.hash_slice_u8, mem.eql_slice_u8);
|
||||
|
||||
pub fn isExported(base: *const Decl, tree: *ast.Tree) bool {
|
||||
switch (base.id) {
|
||||
Id.Fn => {
|
||||
const fn_decl = @fieldParentPtr(Fn, "base", base);
|
||||
return fn_decl.isExported(tree);
|
||||
},
|
||||
else => return false,
|
||||
}
|
||||
}
|
||||
|
||||
pub const Resolution = enum {
|
||||
Unresolved,
|
||||
InProgress,
|
||||
Invalid,
|
||||
Ok,
|
||||
};
|
||||
|
||||
pub const Id = enum {
|
||||
Var,
|
||||
Fn,
|
||||
CompTime,
|
||||
};
|
||||
|
||||
pub const Var = struct {
|
||||
base: Decl,
|
||||
};
|
||||
|
||||
pub const Fn = struct {
|
||||
base: Decl,
|
||||
value: Val,
|
||||
fn_proto: *const ast.Node.FnProto,
|
||||
|
||||
// TODO https://github.com/ziglang/zig/issues/683 and then make this anonymous
|
||||
pub const Val = union {
|
||||
Unresolved: void,
|
||||
Ok: *Value.Fn,
|
||||
};
|
||||
|
||||
pub fn externLibName(self: Fn, tree: *ast.Tree) ?[]const u8 {
|
||||
return if (self.fn_proto.extern_export_inline_token) |tok_index| x: {
|
||||
const token = tree.tokens.at(tok_index);
|
||||
break :x switch (token.id) {
|
||||
Token.Id.Extern => tree.tokenSlicePtr(token),
|
||||
else => null,
|
||||
};
|
||||
} else null;
|
||||
}
|
||||
|
||||
pub fn isExported(self: Fn, tree: *ast.Tree) bool {
|
||||
if (self.fn_proto.extern_export_inline_token) |tok_index| {
|
||||
const token = tree.tokens.at(tok_index);
|
||||
return token.id == Token.Id.Keyword_export;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
pub const CompTime = struct {
|
||||
base: Decl,
|
||||
};
|
||||
};
|
||||
|
||||
pub const Value = struct {
|
||||
pub const Fn = struct {};
|
||||
};
|
||||
|
||||
pub const Type = struct {
|
||||
id: Id,
|
||||
|
||||
pub const Id = enum {
|
||||
Type,
|
||||
Void,
|
||||
Bool,
|
||||
NoReturn,
|
||||
Int,
|
||||
Float,
|
||||
Pointer,
|
||||
Array,
|
||||
Struct,
|
||||
ComptimeFloat,
|
||||
ComptimeInt,
|
||||
Undefined,
|
||||
Null,
|
||||
Optional,
|
||||
ErrorUnion,
|
||||
ErrorSet,
|
||||
Enum,
|
||||
Union,
|
||||
Fn,
|
||||
Opaque,
|
||||
Promise,
|
||||
};
|
||||
|
||||
pub const Struct = struct {
|
||||
base: Type,
|
||||
decls: *Scope.Decls,
|
||||
};
|
||||
};
|
||||
|
||||
pub const ParsedFile = struct {
|
||||
tree: ast.Tree,
|
||||
realpath: []const u8,
|
||||
};
|
||||
|
||||
@ -13278,7 +13278,7 @@ static TypeTableEntry *ir_analyze_instruction_call(IrAnalyze *ira, IrInstruction
|
||||
FnTableEntry *fn_table_entry = fn_ref->value.data.x_bound_fn.fn;
|
||||
IrInstruction *first_arg_ptr = fn_ref->value.data.x_bound_fn.first_arg;
|
||||
return ir_analyze_fn_call(ira, call_instruction, fn_table_entry, fn_table_entry->type_entry,
|
||||
nullptr, first_arg_ptr, is_comptime, call_instruction->fn_inline);
|
||||
fn_ref, first_arg_ptr, is_comptime, call_instruction->fn_inline);
|
||||
} else {
|
||||
ir_add_error_node(ira, fn_ref->source_node,
|
||||
buf_sprintf("type '%s' not a function", buf_ptr(&fn_ref->value.type->name)));
|
||||
|
||||
@ -15,6 +15,8 @@ pub fn QueueMpsc(comptime T: type) type {
|
||||
|
||||
pub const Node = std.atomic.Stack(T).Node;
|
||||
|
||||
/// Not thread-safe. The call to init() must complete before any other functions are called.
|
||||
/// No deinitialization required.
|
||||
pub fn init() Self {
|
||||
return Self{
|
||||
.inboxes = []std.atomic.Stack(T){
|
||||
@ -26,12 +28,15 @@ pub fn QueueMpsc(comptime T: type) type {
|
||||
};
|
||||
}
|
||||
|
||||
/// Fully thread-safe. put() may be called from any thread at any time.
|
||||
pub fn put(self: *Self, node: *Node) void {
|
||||
const inbox_index = @atomicLoad(usize, &self.inbox_index, AtomicOrder.SeqCst);
|
||||
const inbox = &self.inboxes[inbox_index];
|
||||
inbox.push(node);
|
||||
}
|
||||
|
||||
/// Must be called by only 1 consumer at a time. Every call to get() and isEmpty() must complete before
|
||||
/// the next call to get().
|
||||
pub fn get(self: *Self) ?*Node {
|
||||
if (self.outbox.pop()) |node| {
|
||||
return node;
|
||||
@ -43,6 +48,18 @@ pub fn QueueMpsc(comptime T: type) type {
|
||||
}
|
||||
return self.outbox.pop();
|
||||
}
|
||||
|
||||
/// Must be called by only 1 consumer at a time. Every call to get() and isEmpty() must complete before
|
||||
/// the next call to isEmpty().
|
||||
pub fn isEmpty(self: *Self) bool {
|
||||
if (!self.outbox.isEmpty()) return false;
|
||||
const prev_inbox_index = @atomicRmw(usize, &self.inbox_index, AtomicRmwOp.Xor, 0x1, AtomicOrder.SeqCst);
|
||||
const prev_inbox = &self.inboxes[prev_inbox_index];
|
||||
while (prev_inbox.pop()) |node| {
|
||||
self.outbox.push(node);
|
||||
}
|
||||
return self.outbox.isEmpty();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
@ -11,6 +11,11 @@ const builtin = @import("builtin");
|
||||
|
||||
pub const FailingAllocator = @import("failing_allocator.zig").FailingAllocator;
|
||||
|
||||
pub const runtime_safety = switch (builtin.mode) {
|
||||
builtin.Mode.Debug, builtin.Mode.ReleaseSafe => true,
|
||||
builtin.Mode.ReleaseFast, builtin.Mode.ReleaseSmall => false,
|
||||
};
|
||||
|
||||
/// Tries to write to stderr, unbuffered, and ignores any error returned.
|
||||
/// Does not append a newline.
|
||||
/// TODO atomic/multithread support
|
||||
@ -1098,7 +1103,7 @@ fn readILeb128(in_stream: var) !i64 {
|
||||
|
||||
/// This should only be used in temporary test programs.
|
||||
pub const global_allocator = &global_fixed_allocator.allocator;
|
||||
var global_fixed_allocator = std.heap.FixedBufferAllocator.init(global_allocator_mem[0..]);
|
||||
var global_fixed_allocator = std.heap.ThreadSafeFixedBufferAllocator.init(global_allocator_mem[0..]);
|
||||
var global_allocator_mem: [100 * 1024]u8 = undefined;
|
||||
|
||||
// TODO make thread safe
|
||||
|
||||
582
std/event.zig
582
std/event.zig
@ -11,53 +11,69 @@ pub const TcpServer = struct {
|
||||
handleRequestFn: async<*mem.Allocator> fn (*TcpServer, *const std.net.Address, *const std.os.File) void,
|
||||
|
||||
loop: *Loop,
|
||||
sockfd: i32,
|
||||
sockfd: ?i32,
|
||||
accept_coro: ?promise,
|
||||
listen_address: std.net.Address,
|
||||
|
||||
waiting_for_emfile_node: PromiseNode,
|
||||
listen_resume_node: event.Loop.ResumeNode,
|
||||
|
||||
const PromiseNode = std.LinkedList(promise).Node;
|
||||
|
||||
pub fn init(loop: *Loop) !TcpServer {
|
||||
const sockfd = try std.os.posixSocket(posix.AF_INET, posix.SOCK_STREAM | posix.SOCK_CLOEXEC | posix.SOCK_NONBLOCK, posix.PROTO_tcp);
|
||||
errdefer std.os.close(sockfd);
|
||||
|
||||
pub fn init(loop: *Loop) TcpServer {
|
||||
// TODO can't initialize handler coroutine here because we need well defined copy elision
|
||||
return TcpServer{
|
||||
.loop = loop,
|
||||
.sockfd = sockfd,
|
||||
.sockfd = null,
|
||||
.accept_coro = null,
|
||||
.handleRequestFn = undefined,
|
||||
.waiting_for_emfile_node = undefined,
|
||||
.listen_address = undefined,
|
||||
.listen_resume_node = event.Loop.ResumeNode{
|
||||
.id = event.Loop.ResumeNode.Id.Basic,
|
||||
.handle = undefined,
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
pub fn listen(self: *TcpServer, address: *const std.net.Address, handleRequestFn: async<*mem.Allocator> fn (*TcpServer, *const std.net.Address, *const std.os.File) void) !void {
|
||||
pub fn listen(
|
||||
self: *TcpServer,
|
||||
address: *const std.net.Address,
|
||||
handleRequestFn: async<*mem.Allocator> fn (*TcpServer, *const std.net.Address, *const std.os.File) void,
|
||||
) !void {
|
||||
self.handleRequestFn = handleRequestFn;
|
||||
|
||||
try std.os.posixBind(self.sockfd, &address.os_addr);
|
||||
try std.os.posixListen(self.sockfd, posix.SOMAXCONN);
|
||||
self.listen_address = std.net.Address.initPosix(try std.os.posixGetSockName(self.sockfd));
|
||||
const sockfd = try std.os.posixSocket(posix.AF_INET, posix.SOCK_STREAM | posix.SOCK_CLOEXEC | posix.SOCK_NONBLOCK, posix.PROTO_tcp);
|
||||
errdefer std.os.close(sockfd);
|
||||
self.sockfd = sockfd;
|
||||
|
||||
try std.os.posixBind(sockfd, &address.os_addr);
|
||||
try std.os.posixListen(sockfd, posix.SOMAXCONN);
|
||||
self.listen_address = std.net.Address.initPosix(try std.os.posixGetSockName(sockfd));
|
||||
|
||||
self.accept_coro = try async<self.loop.allocator> TcpServer.handler(self);
|
||||
errdefer cancel self.accept_coro.?;
|
||||
|
||||
try self.loop.addFd(self.sockfd, self.accept_coro.?);
|
||||
errdefer self.loop.removeFd(self.sockfd);
|
||||
self.listen_resume_node.handle = self.accept_coro.?;
|
||||
try self.loop.addFd(sockfd, &self.listen_resume_node);
|
||||
errdefer self.loop.removeFd(sockfd);
|
||||
}
|
||||
|
||||
/// Stop listening
|
||||
pub fn close(self: *TcpServer) void {
|
||||
self.loop.removeFd(self.sockfd.?);
|
||||
std.os.close(self.sockfd.?);
|
||||
}
|
||||
|
||||
pub fn deinit(self: *TcpServer) void {
|
||||
self.loop.removeFd(self.sockfd);
|
||||
if (self.accept_coro) |accept_coro| cancel accept_coro;
|
||||
std.os.close(self.sockfd);
|
||||
if (self.sockfd) |sockfd| std.os.close(sockfd);
|
||||
}
|
||||
|
||||
pub async fn handler(self: *TcpServer) void {
|
||||
while (true) {
|
||||
var accepted_addr: std.net.Address = undefined;
|
||||
if (std.os.posixAccept(self.sockfd, &accepted_addr.os_addr, posix.SOCK_NONBLOCK | posix.SOCK_CLOEXEC)) |accepted_fd| {
|
||||
if (std.os.posixAccept(self.sockfd.?, &accepted_addr.os_addr, posix.SOCK_NONBLOCK | posix.SOCK_CLOEXEC)) |accepted_fd| {
|
||||
var socket = std.os.File.openHandle(accepted_fd);
|
||||
_ = async<self.loop.allocator> self.handleRequestFn(self, accepted_addr, socket) catch |err| switch (err) {
|
||||
error.OutOfMemory => {
|
||||
@ -95,32 +111,65 @@ pub const TcpServer = struct {
|
||||
|
||||
pub const Loop = struct {
|
||||
allocator: *mem.Allocator,
|
||||
keep_running: bool,
|
||||
next_tick_queue: std.atomic.QueueMpsc(promise),
|
||||
os_data: OsData,
|
||||
|
||||
const OsData = switch (builtin.os) {
|
||||
builtin.Os.linux => struct {
|
||||
epollfd: i32,
|
||||
},
|
||||
else => struct {},
|
||||
};
|
||||
dispatch_lock: u8, // TODO make this a bool
|
||||
pending_event_count: usize,
|
||||
extra_threads: []*std.os.Thread,
|
||||
final_resume_node: ResumeNode,
|
||||
|
||||
pub const NextTickNode = std.atomic.QueueMpsc(promise).Node;
|
||||
|
||||
pub const ResumeNode = struct {
|
||||
id: Id,
|
||||
handle: promise,
|
||||
|
||||
pub const Id = enum {
|
||||
Basic,
|
||||
Stop,
|
||||
EventFd,
|
||||
};
|
||||
|
||||
pub const EventFd = struct {
|
||||
base: ResumeNode,
|
||||
eventfd: i32,
|
||||
};
|
||||
};
|
||||
|
||||
/// After initialization, call run().
|
||||
/// TODO copy elision / named return values so that the threads referencing *Loop
|
||||
/// have the correct pointer value.
|
||||
fn initSingleThreaded(self: *Loop, allocator: *mem.Allocator) !void {
|
||||
return self.initInternal(allocator, 1);
|
||||
}
|
||||
|
||||
/// The allocator must be thread-safe because we use it for multiplexing
|
||||
/// coroutines onto kernel threads.
|
||||
pub fn init(allocator: *mem.Allocator) !Loop {
|
||||
var self = Loop{
|
||||
.keep_running = true,
|
||||
/// After initialization, call run().
|
||||
/// TODO copy elision / named return values so that the threads referencing *Loop
|
||||
/// have the correct pointer value.
|
||||
fn initMultiThreaded(self: *Loop, allocator: *mem.Allocator) !void {
|
||||
// TODO check the actual cpu core count
|
||||
return self.initInternal(allocator, 4);
|
||||
}
|
||||
|
||||
/// Thread count is the total thread count. The thread pool size will be
|
||||
/// max(thread_count - 1, 0)
|
||||
fn initInternal(self: *Loop, allocator: *mem.Allocator, thread_count: usize) !void {
|
||||
self.* = Loop{
|
||||
.pending_event_count = 0,
|
||||
.allocator = allocator,
|
||||
.os_data = undefined,
|
||||
.next_tick_queue = std.atomic.QueueMpsc(promise).init(),
|
||||
.dispatch_lock = 1, // start locked so threads go directly into epoll wait
|
||||
.extra_threads = undefined,
|
||||
.final_resume_node = ResumeNode{
|
||||
.id = ResumeNode.Id.Stop,
|
||||
.handle = undefined,
|
||||
},
|
||||
};
|
||||
try self.initOsData();
|
||||
try self.initOsData(thread_count);
|
||||
errdefer self.deinitOsData();
|
||||
|
||||
return self;
|
||||
}
|
||||
|
||||
/// must call stop before deinit
|
||||
@ -128,13 +177,70 @@ pub const Loop = struct {
|
||||
self.deinitOsData();
|
||||
}
|
||||
|
||||
const InitOsDataError = std.os.LinuxEpollCreateError;
|
||||
const InitOsDataError = std.os.LinuxEpollCreateError || mem.Allocator.Error || std.os.LinuxEventFdError ||
|
||||
std.os.SpawnThreadError || std.os.LinuxEpollCtlError;
|
||||
|
||||
fn initOsData(self: *Loop) InitOsDataError!void {
|
||||
const wakeup_bytes = []u8{0x1} ** 8;
|
||||
|
||||
fn initOsData(self: *Loop, thread_count: usize) InitOsDataError!void {
|
||||
switch (builtin.os) {
|
||||
builtin.Os.linux => {
|
||||
self.os_data.epollfd = try std.os.linuxEpollCreate(std.os.linux.EPOLL_CLOEXEC);
|
||||
const extra_thread_count = thread_count - 1;
|
||||
self.os_data.available_eventfd_resume_nodes = std.atomic.Stack(ResumeNode.EventFd).init();
|
||||
self.os_data.eventfd_resume_nodes = try self.allocator.alloc(
|
||||
std.atomic.Stack(ResumeNode.EventFd).Node,
|
||||
extra_thread_count,
|
||||
);
|
||||
errdefer self.allocator.free(self.os_data.eventfd_resume_nodes);
|
||||
|
||||
errdefer {
|
||||
while (self.os_data.available_eventfd_resume_nodes.pop()) |node| std.os.close(node.data.eventfd);
|
||||
}
|
||||
for (self.os_data.eventfd_resume_nodes) |*eventfd_node| {
|
||||
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
|
||||
.data = ResumeNode.EventFd{
|
||||
.base = ResumeNode{
|
||||
.id = ResumeNode.Id.EventFd,
|
||||
.handle = undefined,
|
||||
},
|
||||
.eventfd = try std.os.linuxEventFd(1, posix.EFD_CLOEXEC | posix.EFD_NONBLOCK),
|
||||
},
|
||||
.next = undefined,
|
||||
};
|
||||
self.os_data.available_eventfd_resume_nodes.push(eventfd_node);
|
||||
}
|
||||
|
||||
self.os_data.epollfd = try std.os.linuxEpollCreate(posix.EPOLL_CLOEXEC);
|
||||
errdefer std.os.close(self.os_data.epollfd);
|
||||
|
||||
self.os_data.final_eventfd = try std.os.linuxEventFd(0, posix.EFD_CLOEXEC | posix.EFD_NONBLOCK);
|
||||
errdefer std.os.close(self.os_data.final_eventfd);
|
||||
|
||||
self.os_data.final_eventfd_event = posix.epoll_event{
|
||||
.events = posix.EPOLLIN,
|
||||
.data = posix.epoll_data{ .ptr = @ptrToInt(&self.final_resume_node) },
|
||||
};
|
||||
try std.os.linuxEpollCtl(
|
||||
self.os_data.epollfd,
|
||||
posix.EPOLL_CTL_ADD,
|
||||
self.os_data.final_eventfd,
|
||||
&self.os_data.final_eventfd_event,
|
||||
);
|
||||
self.extra_threads = try self.allocator.alloc(*std.os.Thread, extra_thread_count);
|
||||
errdefer self.allocator.free(self.extra_threads);
|
||||
|
||||
var extra_thread_index: usize = 0;
|
||||
errdefer {
|
||||
while (extra_thread_index != 0) {
|
||||
extra_thread_index -= 1;
|
||||
// writing 8 bytes to an eventfd cannot fail
|
||||
std.os.posixWrite(self.os_data.final_eventfd, wakeup_bytes) catch unreachable;
|
||||
self.extra_threads[extra_thread_index].wait();
|
||||
}
|
||||
}
|
||||
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
|
||||
self.extra_threads[extra_thread_index] = try std.os.spawnThread(self, workerRun);
|
||||
}
|
||||
},
|
||||
else => {},
|
||||
}
|
||||
@ -142,65 +248,154 @@ pub const Loop = struct {
|
||||
|
||||
fn deinitOsData(self: *Loop) void {
|
||||
switch (builtin.os) {
|
||||
builtin.Os.linux => std.os.close(self.os_data.epollfd),
|
||||
builtin.Os.linux => {
|
||||
std.os.close(self.os_data.final_eventfd);
|
||||
while (self.os_data.available_eventfd_resume_nodes.pop()) |node| std.os.close(node.data.eventfd);
|
||||
std.os.close(self.os_data.epollfd);
|
||||
self.allocator.free(self.os_data.eventfd_resume_nodes);
|
||||
self.allocator.free(self.extra_threads);
|
||||
},
|
||||
else => {},
|
||||
}
|
||||
}
|
||||
|
||||
pub fn addFd(self: *Loop, fd: i32, prom: promise) !void {
|
||||
/// resume_node must live longer than the promise that it holds a reference to.
|
||||
pub fn addFd(self: *Loop, fd: i32, resume_node: *ResumeNode) !void {
|
||||
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
|
||||
errdefer {
|
||||
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
||||
}
|
||||
try self.addFdNoCounter(fd, resume_node);
|
||||
}
|
||||
|
||||
fn addFdNoCounter(self: *Loop, fd: i32, resume_node: *ResumeNode) !void {
|
||||
var ev = std.os.linux.epoll_event{
|
||||
.events = std.os.linux.EPOLLIN | std.os.linux.EPOLLOUT | std.os.linux.EPOLLET,
|
||||
.data = std.os.linux.epoll_data{ .ptr = @ptrToInt(prom) },
|
||||
.data = std.os.linux.epoll_data{ .ptr = @ptrToInt(resume_node) },
|
||||
};
|
||||
try std.os.linuxEpollCtl(self.os_data.epollfd, std.os.linux.EPOLL_CTL_ADD, fd, &ev);
|
||||
}
|
||||
|
||||
pub fn removeFd(self: *Loop, fd: i32) void {
|
||||
self.removeFdNoCounter(fd);
|
||||
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
||||
}
|
||||
|
||||
fn removeFdNoCounter(self: *Loop, fd: i32) void {
|
||||
std.os.linuxEpollCtl(self.os_data.epollfd, std.os.linux.EPOLL_CTL_DEL, fd, undefined) catch {};
|
||||
}
|
||||
async fn waitFd(self: *Loop, fd: i32) !void {
|
||||
|
||||
pub async fn waitFd(self: *Loop, fd: i32) !void {
|
||||
defer self.removeFd(fd);
|
||||
var resume_node = ResumeNode{
|
||||
.id = ResumeNode.Id.Basic,
|
||||
.handle = undefined,
|
||||
};
|
||||
suspend |p| {
|
||||
try self.addFd(fd, p);
|
||||
resume_node.handle = p;
|
||||
try self.addFd(fd, &resume_node);
|
||||
}
|
||||
var a = &resume_node; // TODO better way to explicitly put memory in coro frame
|
||||
}
|
||||
|
||||
pub fn stop(self: *Loop) void {
|
||||
// TODO make atomic
|
||||
self.keep_running = false;
|
||||
// TODO activate an fd in the epoll set which should cancel all the promises
|
||||
}
|
||||
|
||||
/// bring your own linked list node. this means it can't fail.
|
||||
/// Bring your own linked list node. This means it can't fail.
|
||||
pub fn onNextTick(self: *Loop, node: *NextTickNode) void {
|
||||
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
|
||||
self.next_tick_queue.put(node);
|
||||
}
|
||||
|
||||
pub fn run(self: *Loop) void {
|
||||
while (self.keep_running) {
|
||||
// TODO multiplex the next tick queue and the epoll event results onto a thread pool
|
||||
while (self.next_tick_queue.get()) |node| {
|
||||
resume node.data;
|
||||
}
|
||||
if (!self.keep_running) break;
|
||||
|
||||
self.dispatchOsEvents();
|
||||
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
||||
self.workerRun();
|
||||
for (self.extra_threads) |extra_thread| {
|
||||
extra_thread.wait();
|
||||
}
|
||||
}
|
||||
|
||||
fn dispatchOsEvents(self: *Loop) void {
|
||||
switch (builtin.os) {
|
||||
builtin.Os.linux => {
|
||||
var events: [16]std.os.linux.epoll_event = undefined;
|
||||
const count = std.os.linuxEpollWait(self.os_data.epollfd, events[0..], -1);
|
||||
for (events[0..count]) |ev| {
|
||||
const p = @intToPtr(promise, ev.data.ptr);
|
||||
resume p;
|
||||
fn workerRun(self: *Loop) void {
|
||||
start_over: while (true) {
|
||||
if (@atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst) == 0) {
|
||||
while (self.next_tick_queue.get()) |next_tick_node| {
|
||||
const handle = next_tick_node.data;
|
||||
if (self.next_tick_queue.isEmpty()) {
|
||||
// last node, just resume it
|
||||
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
||||
resume handle;
|
||||
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
||||
continue :start_over;
|
||||
}
|
||||
|
||||
// non-last node, stick it in the epoll set so that
|
||||
// other threads can get to it
|
||||
if (self.os_data.available_eventfd_resume_nodes.pop()) |resume_stack_node| {
|
||||
const eventfd_node = &resume_stack_node.data;
|
||||
eventfd_node.base.handle = handle;
|
||||
// the pending count is already accounted for
|
||||
self.addFdNoCounter(eventfd_node.eventfd, &eventfd_node.base) catch |_| {
|
||||
// fine, we didn't need it anyway
|
||||
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
||||
self.os_data.available_eventfd_resume_nodes.push(resume_stack_node);
|
||||
resume handle;
|
||||
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
||||
continue :start_over;
|
||||
};
|
||||
} else {
|
||||
// threads are too busy, can't add another eventfd to wake one up
|
||||
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
||||
resume handle;
|
||||
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
||||
continue :start_over;
|
||||
}
|
||||
}
|
||||
},
|
||||
else => {},
|
||||
|
||||
const pending_event_count = @atomicLoad(usize, &self.pending_event_count, AtomicOrder.SeqCst);
|
||||
if (pending_event_count == 0) {
|
||||
// cause all the threads to stop
|
||||
// writing 8 bytes to an eventfd cannot fail
|
||||
std.os.posixWrite(self.os_data.final_eventfd, wakeup_bytes) catch unreachable;
|
||||
return;
|
||||
}
|
||||
|
||||
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
||||
}
|
||||
|
||||
// only process 1 event so we don't steal from other threads
|
||||
var events: [1]std.os.linux.epoll_event = undefined;
|
||||
const count = std.os.linuxEpollWait(self.os_data.epollfd, events[0..], -1);
|
||||
for (events[0..count]) |ev| {
|
||||
const resume_node = @intToPtr(*ResumeNode, ev.data.ptr);
|
||||
const handle = resume_node.handle;
|
||||
const resume_node_id = resume_node.id;
|
||||
switch (resume_node_id) {
|
||||
ResumeNode.Id.Basic => {},
|
||||
ResumeNode.Id.Stop => return,
|
||||
ResumeNode.Id.EventFd => {
|
||||
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
|
||||
self.removeFdNoCounter(event_fd_node.eventfd);
|
||||
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
|
||||
self.os_data.available_eventfd_resume_nodes.push(stack_node);
|
||||
},
|
||||
}
|
||||
resume handle;
|
||||
if (resume_node_id == ResumeNode.Id.EventFd) {
|
||||
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const OsData = switch (builtin.os) {
|
||||
builtin.Os.linux => struct {
|
||||
epollfd: i32,
|
||||
// pre-allocated eventfds. all permanently active.
|
||||
// this is how we send promises to be resumed on other threads.
|
||||
available_eventfd_resume_nodes: std.atomic.Stack(ResumeNode.EventFd),
|
||||
eventfd_resume_nodes: []std.atomic.Stack(ResumeNode.EventFd).Node,
|
||||
final_eventfd: i32,
|
||||
final_eventfd_event: posix.epoll_event,
|
||||
},
|
||||
else => struct {},
|
||||
};
|
||||
};
|
||||
|
||||
/// many producer, many consumer, thread-safe, lock-free, runtime configurable buffer size
|
||||
@ -304,9 +499,7 @@ pub fn Channel(comptime T: type) type {
|
||||
// TODO integrate this function with named return values
|
||||
// so we can get rid of this extra result copy
|
||||
var result: T = undefined;
|
||||
var debug_handle: usize = undefined;
|
||||
suspend |handle| {
|
||||
debug_handle = @ptrToInt(handle);
|
||||
var my_tick_node = Loop.NextTickNode{
|
||||
.next = undefined,
|
||||
.data = handle,
|
||||
@ -438,9 +631,8 @@ test "listen on a port, send bytes, receive bytes" {
|
||||
const self = @fieldParentPtr(Self, "tcp_server", tcp_server);
|
||||
var socket = _socket.*; // TODO https://github.com/ziglang/zig/issues/733
|
||||
defer socket.close();
|
||||
const next_handler = async errorableHandler(self, _addr, socket) catch |err| switch (err) {
|
||||
error.OutOfMemory => @panic("unable to handle connection: out of memory"),
|
||||
};
|
||||
// TODO guarantee elision of this allocation
|
||||
const next_handler = async errorableHandler(self, _addr, socket) catch unreachable;
|
||||
(await next_handler) catch |err| {
|
||||
std.debug.panic("unable to handle connection: {}\n", err);
|
||||
};
|
||||
@ -461,17 +653,18 @@ test "listen on a port, send bytes, receive bytes" {
|
||||
const ip4addr = std.net.parseIp4("127.0.0.1") catch unreachable;
|
||||
const addr = std.net.Address.initIp4(ip4addr, 0);
|
||||
|
||||
var loop = try Loop.init(std.debug.global_allocator);
|
||||
var server = MyServer{ .tcp_server = try TcpServer.init(&loop) };
|
||||
var loop: Loop = undefined;
|
||||
try loop.initSingleThreaded(std.debug.global_allocator);
|
||||
var server = MyServer{ .tcp_server = TcpServer.init(&loop) };
|
||||
defer server.tcp_server.deinit();
|
||||
try server.tcp_server.listen(addr, MyServer.handler);
|
||||
|
||||
const p = try async<std.debug.global_allocator> doAsyncTest(&loop, server.tcp_server.listen_address);
|
||||
const p = try async<std.debug.global_allocator> doAsyncTest(&loop, server.tcp_server.listen_address, &server.tcp_server);
|
||||
defer cancel p;
|
||||
loop.run();
|
||||
}
|
||||
|
||||
async fn doAsyncTest(loop: *Loop, address: *const std.net.Address) void {
|
||||
async fn doAsyncTest(loop: *Loop, address: *const std.net.Address, server: *TcpServer) void {
|
||||
errdefer @panic("test failure");
|
||||
|
||||
var socket_file = try await try async event.connect(loop, address);
|
||||
@ -481,7 +674,7 @@ async fn doAsyncTest(loop: *Loop, address: *const std.net.Address) void {
|
||||
const amt_read = try socket_file.read(buf[0..]);
|
||||
const msg = buf[0..amt_read];
|
||||
assert(mem.eql(u8, msg, "hello from server\n"));
|
||||
loop.stop();
|
||||
server.close();
|
||||
}
|
||||
|
||||
test "std.event.Channel" {
|
||||
@ -490,7 +683,9 @@ test "std.event.Channel" {
|
||||
|
||||
const allocator = &da.allocator;
|
||||
|
||||
var loop = try Loop.init(allocator);
|
||||
var loop: Loop = undefined;
|
||||
// TODO make a multi threaded test
|
||||
try loop.initSingleThreaded(allocator);
|
||||
defer loop.deinit();
|
||||
|
||||
const channel = try Channel(i32).create(&loop, 0);
|
||||
@ -515,11 +710,248 @@ async fn testChannelGetter(loop: *Loop, channel: *Channel(i32)) void {
|
||||
const value2_promise = try async channel.get();
|
||||
const value2 = await value2_promise;
|
||||
assert(value2 == 4567);
|
||||
|
||||
loop.stop();
|
||||
}
|
||||
|
||||
async fn testChannelPutter(channel: *Channel(i32)) void {
|
||||
await (async channel.put(1234) catch @panic("out of memory"));
|
||||
await (async channel.put(4567) catch @panic("out of memory"));
|
||||
}
|
||||
|
||||
/// Thread-safe async/await lock.
|
||||
/// Does not make any syscalls - coroutines which are waiting for the lock are suspended, and
|
||||
/// are resumed when the lock is released, in order.
|
||||
pub const Lock = struct {
|
||||
loop: *Loop,
|
||||
shared_bit: u8, // TODO make this a bool
|
||||
queue: Queue,
|
||||
queue_empty_bit: u8, // TODO make this a bool
|
||||
|
||||
const Queue = std.atomic.QueueMpsc(promise);
|
||||
|
||||
pub const Held = struct {
|
||||
lock: *Lock,
|
||||
|
||||
pub fn release(self: Held) void {
|
||||
// Resume the next item from the queue.
|
||||
if (self.lock.queue.get()) |node| {
|
||||
self.lock.loop.onNextTick(node);
|
||||
return;
|
||||
}
|
||||
|
||||
// We need to release the lock.
|
||||
_ = @atomicRmw(u8, &self.lock.queue_empty_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
|
||||
_ = @atomicRmw(u8, &self.lock.shared_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
||||
|
||||
// There might be a queue item. If we know the queue is empty, we can be done,
|
||||
// because the other actor will try to obtain the lock.
|
||||
// But if there's a queue item, we are the actor which must loop and attempt
|
||||
// to grab the lock again.
|
||||
if (@atomicLoad(u8, &self.lock.queue_empty_bit, AtomicOrder.SeqCst) == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
while (true) {
|
||||
const old_bit = @atomicRmw(u8, &self.lock.shared_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
|
||||
if (old_bit != 0) {
|
||||
// We did not obtain the lock. Great, the queue is someone else's problem.
|
||||
return;
|
||||
}
|
||||
|
||||
// Resume the next item from the queue.
|
||||
if (self.lock.queue.get()) |node| {
|
||||
self.lock.loop.onNextTick(node);
|
||||
return;
|
||||
}
|
||||
|
||||
// Release the lock again.
|
||||
_ = @atomicRmw(u8, &self.lock.queue_empty_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
|
||||
_ = @atomicRmw(u8, &self.lock.shared_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
||||
|
||||
// Find out if we can be done.
|
||||
if (@atomicLoad(u8, &self.lock.queue_empty_bit, AtomicOrder.SeqCst) == 1) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
pub fn init(loop: *Loop) Lock {
|
||||
return Lock{
|
||||
.loop = loop,
|
||||
.shared_bit = 0,
|
||||
.queue = Queue.init(),
|
||||
.queue_empty_bit = 1,
|
||||
};
|
||||
}
|
||||
|
||||
/// Must be called when not locked. Not thread safe.
|
||||
/// All calls to acquire() and release() must complete before calling deinit().
|
||||
pub fn deinit(self: *Lock) void {
|
||||
assert(self.shared_bit == 0);
|
||||
while (self.queue.get()) |node| cancel node.data;
|
||||
}
|
||||
|
||||
pub async fn acquire(self: *Lock) Held {
|
||||
var my_tick_node: Loop.NextTickNode = undefined;
|
||||
|
||||
s: suspend |handle| {
|
||||
my_tick_node.data = handle;
|
||||
self.queue.put(&my_tick_node);
|
||||
|
||||
// At this point, we are in the queue, so we might have already been resumed and this coroutine
|
||||
// frame might be destroyed. For the rest of the suspend block we cannot access the coroutine frame.
|
||||
|
||||
// We set this bit so that later we can rely on the fact, that if queue_empty_bit is 1, some actor
|
||||
// will attempt to grab the lock.
|
||||
_ = @atomicRmw(u8, &self.queue_empty_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
||||
|
||||
while (true) {
|
||||
const old_bit = @atomicRmw(u8, &self.shared_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
|
||||
if (old_bit != 0) {
|
||||
// We did not obtain the lock. Trust that our queue entry will resume us, and allow
|
||||
// suspend to complete.
|
||||
break;
|
||||
}
|
||||
// We got the lock. However we might have already been resumed from the queue.
|
||||
if (self.queue.get()) |node| {
|
||||
// Whether this node is us or someone else, we tail resume it.
|
||||
resume node.data;
|
||||
break;
|
||||
} else {
|
||||
// We already got resumed, and there are none left in the queue, which means that
|
||||
// we aren't even supposed to hold the lock right now.
|
||||
_ = @atomicRmw(u8, &self.queue_empty_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
|
||||
_ = @atomicRmw(u8, &self.shared_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
||||
|
||||
// There might be a queue item. If we know the queue is empty, we can be done,
|
||||
// because the other actor will try to obtain the lock.
|
||||
// But if there's a queue item, we are the actor which must loop and attempt
|
||||
// to grab the lock again.
|
||||
if (@atomicLoad(u8, &self.queue_empty_bit, AtomicOrder.SeqCst) == 1) {
|
||||
break;
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
unreachable;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO this workaround to force my_tick_node to be in the coroutine frame should
|
||||
// not be necessary
|
||||
var trash1 = &my_tick_node;
|
||||
|
||||
return Held{ .lock = self };
|
||||
}
|
||||
};
|
||||
|
||||
/// Thread-safe async/await lock that protects one piece of data.
|
||||
/// Does not make any syscalls - coroutines which are waiting for the lock are suspended, and
|
||||
/// are resumed when the lock is released, in order.
|
||||
pub fn Locked(comptime T: type) type {
|
||||
return struct {
|
||||
lock: Lock,
|
||||
private_data: T,
|
||||
|
||||
const Self = this;
|
||||
|
||||
pub const HeldLock = struct {
|
||||
value: *T,
|
||||
held: Lock.Held,
|
||||
|
||||
pub fn release(self: HeldLock) void {
|
||||
self.held.release();
|
||||
}
|
||||
};
|
||||
|
||||
pub fn init(loop: *Loop, data: T) Self {
|
||||
return Self{
|
||||
.lock = Lock.init(loop),
|
||||
.private_data = data,
|
||||
};
|
||||
}
|
||||
|
||||
pub fn deinit(self: *Self) void {
|
||||
self.lock.deinit();
|
||||
}
|
||||
|
||||
pub async fn acquire(self: *Self) HeldLock {
|
||||
return HeldLock{
|
||||
// TODO guaranteed allocation elision
|
||||
.held = await (async self.lock.acquire() catch unreachable),
|
||||
.value = &self.private_data,
|
||||
};
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
test "std.event.Lock" {
|
||||
var da = std.heap.DirectAllocator.init();
|
||||
defer da.deinit();
|
||||
|
||||
const allocator = &da.allocator;
|
||||
|
||||
var loop: Loop = undefined;
|
||||
try loop.initMultiThreaded(allocator);
|
||||
defer loop.deinit();
|
||||
|
||||
var lock = Lock.init(&loop);
|
||||
defer lock.deinit();
|
||||
|
||||
const handle = try async<allocator> testLock(&loop, &lock);
|
||||
defer cancel handle;
|
||||
loop.run();
|
||||
|
||||
assert(mem.eql(i32, shared_test_data, [1]i32{3 * 10} ** 10));
|
||||
}
|
||||
|
||||
async fn testLock(loop: *Loop, lock: *Lock) void {
|
||||
const handle1 = async lockRunner(lock) catch @panic("out of memory");
|
||||
var tick_node1 = Loop.NextTickNode{
|
||||
.next = undefined,
|
||||
.data = handle1,
|
||||
};
|
||||
loop.onNextTick(&tick_node1);
|
||||
|
||||
const handle2 = async lockRunner(lock) catch @panic("out of memory");
|
||||
var tick_node2 = Loop.NextTickNode{
|
||||
.next = undefined,
|
||||
.data = handle2,
|
||||
};
|
||||
loop.onNextTick(&tick_node2);
|
||||
|
||||
const handle3 = async lockRunner(lock) catch @panic("out of memory");
|
||||
var tick_node3 = Loop.NextTickNode{
|
||||
.next = undefined,
|
||||
.data = handle3,
|
||||
};
|
||||
loop.onNextTick(&tick_node3);
|
||||
|
||||
await handle1;
|
||||
await handle2;
|
||||
await handle3;
|
||||
|
||||
// TODO this is to force tick node memory to be in the coro frame
|
||||
// there should be a way to make it explicit where the memory is
|
||||
var a = &tick_node1;
|
||||
var b = &tick_node2;
|
||||
var c = &tick_node3;
|
||||
}
|
||||
|
||||
var shared_test_data = [1]i32{0} ** 10;
|
||||
var shared_test_index: usize = 0;
|
||||
|
||||
async fn lockRunner(lock: *Lock) void {
|
||||
suspend; // resumed by onNextTick
|
||||
|
||||
var i: usize = 0;
|
||||
while (i < 10) : (i += 1) {
|
||||
const handle = await (async lock.acquire() catch @panic("out of memory"));
|
||||
defer handle.release();
|
||||
|
||||
shared_test_index = 0;
|
||||
while (shared_test_index < shared_test_data.len) : (shared_test_index += 1) {
|
||||
shared_test_data[shared_test_index] = shared_test_data[shared_test_index] + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
30
std/heap.zig
30
std/heap.zig
@ -38,7 +38,7 @@ fn cFree(self: *Allocator, old_mem: []u8) void {
|
||||
}
|
||||
|
||||
/// This allocator makes a syscall directly for every allocation and free.
|
||||
/// TODO make this thread-safe. The windows implementation will need some atomics.
|
||||
/// Thread-safe and lock-free.
|
||||
pub const DirectAllocator = struct {
|
||||
allocator: Allocator,
|
||||
heap_handle: ?HeapHandle,
|
||||
@ -74,34 +74,34 @@ pub const DirectAllocator = struct {
|
||||
const alloc_size = if (alignment <= os.page_size) n else n + alignment;
|
||||
const addr = p.mmap(null, alloc_size, p.PROT_READ | p.PROT_WRITE, p.MAP_PRIVATE | p.MAP_ANONYMOUS, -1, 0);
|
||||
if (addr == p.MAP_FAILED) return error.OutOfMemory;
|
||||
|
||||
if (alloc_size == n) return @intToPtr([*]u8, addr)[0..n];
|
||||
|
||||
var aligned_addr = addr & ~usize(alignment - 1);
|
||||
aligned_addr += alignment;
|
||||
const aligned_addr = (addr & ~usize(alignment - 1)) + alignment;
|
||||
|
||||
//We can unmap the unused portions of our mmap, but we must only
|
||||
// pass munmap bytes that exist outside our allocated pages or it
|
||||
// will happily eat us too
|
||||
// We can unmap the unused portions of our mmap, but we must only
|
||||
// pass munmap bytes that exist outside our allocated pages or it
|
||||
// will happily eat us too.
|
||||
|
||||
//Since alignment > page_size, we are by definition on a page boundry
|
||||
// Since alignment > page_size, we are by definition on a page boundary.
|
||||
const unused_start = addr;
|
||||
const unused_len = aligned_addr - 1 - unused_start;
|
||||
|
||||
var err = p.munmap(unused_start, unused_len);
|
||||
debug.assert(p.getErrno(err) == 0);
|
||||
const err = p.munmap(unused_start, unused_len);
|
||||
assert(p.getErrno(err) == 0);
|
||||
|
||||
//It is impossible that there is an unoccupied page at the top of our
|
||||
// mmap.
|
||||
// It is impossible that there is an unoccupied page at the top of our
|
||||
// mmap.
|
||||
|
||||
return @intToPtr([*]u8, aligned_addr)[0..n];
|
||||
},
|
||||
Os.windows => {
|
||||
const amt = n + alignment + @sizeOf(usize);
|
||||
const heap_handle = self.heap_handle orelse blk: {
|
||||
const optional_heap_handle = @atomicLoad(?HeapHandle, ?self.heap_handle, builtin.AtomicOrder.SeqCst);
|
||||
const heap_handle = optional_heap_handle orelse blk: {
|
||||
const hh = os.windows.HeapCreate(os.windows.HEAP_NO_SERIALIZE, amt, 0) orelse return error.OutOfMemory;
|
||||
self.heap_handle = hh;
|
||||
break :blk hh;
|
||||
const other_hh = @cmpxchgStrong(?HeapHandle, &self.heap_handle, null, hh, builtin.AtomicOrder.SeqCst, builtin.AtomicOrder.SeqCst) orelse break :blk hh;
|
||||
_ = os.windows.HeapDestroy(hh);
|
||||
break :blk other_hh;
|
||||
};
|
||||
const ptr = os.windows.HeapAlloc(heap_handle, 0, amt) orelse return error.OutOfMemory;
|
||||
const root_addr = @ptrToInt(ptr);
|
||||
|
||||
@ -6,7 +6,7 @@ const builtin = @import("builtin");
|
||||
const mem = this;
|
||||
|
||||
pub const Allocator = struct {
|
||||
const Error = error{OutOfMemory};
|
||||
pub const Error = error{OutOfMemory};
|
||||
|
||||
/// Allocate byte_count bytes and return them in a slice, with the
|
||||
/// slice's pointer aligned at least to alignment bytes.
|
||||
|
||||
@ -2309,6 +2309,30 @@ pub fn linuxEpollWait(epfd: i32, events: []linux.epoll_event, timeout: i32) usiz
|
||||
}
|
||||
}
|
||||
|
||||
pub const LinuxEventFdError = error{
|
||||
InvalidFlagValue,
|
||||
SystemResources,
|
||||
ProcessFdQuotaExceeded,
|
||||
SystemFdQuotaExceeded,
|
||||
|
||||
Unexpected,
|
||||
};
|
||||
|
||||
pub fn linuxEventFd(initval: u32, flags: u32) LinuxEventFdError!i32 {
|
||||
const rc = posix.eventfd(initval, flags);
|
||||
const err = posix.getErrno(rc);
|
||||
switch (err) {
|
||||
0 => return @intCast(i32, rc),
|
||||
else => return unexpectedErrorPosix(err),
|
||||
|
||||
posix.EINVAL => return LinuxEventFdError.InvalidFlagValue,
|
||||
posix.EMFILE => return LinuxEventFdError.ProcessFdQuotaExceeded,
|
||||
posix.ENFILE => return LinuxEventFdError.SystemFdQuotaExceeded,
|
||||
posix.ENODEV => return LinuxEventFdError.SystemResources,
|
||||
posix.ENOMEM => return LinuxEventFdError.SystemResources,
|
||||
}
|
||||
}
|
||||
|
||||
pub const PosixGetSockNameError = error{
|
||||
/// Insufficient resources were available in the system to perform the operation.
|
||||
SystemResources,
|
||||
@ -2605,10 +2629,17 @@ pub fn spawnThread(context: var, comptime startFn: var) SpawnThreadError!*Thread
|
||||
|
||||
const MainFuncs = struct {
|
||||
extern fn linuxThreadMain(ctx_addr: usize) u8 {
|
||||
if (@sizeOf(Context) == 0) {
|
||||
return startFn({});
|
||||
} else {
|
||||
return startFn(@intToPtr(*const Context, ctx_addr).*);
|
||||
const arg = if (@sizeOf(Context) == 0) {} else @intToPtr(*const Context, ctx_addr).*;
|
||||
|
||||
switch (@typeId(@typeOf(startFn).ReturnType)) {
|
||||
builtin.TypeId.Int => {
|
||||
return startFn(arg);
|
||||
},
|
||||
builtin.TypeId.Void => {
|
||||
startFn(arg);
|
||||
return 0;
|
||||
},
|
||||
else => @compileError("expected return type of startFn to be 'u8', 'noreturn', 'void', or '!void'"),
|
||||
}
|
||||
}
|
||||
extern fn posixThreadMain(ctx: ?*c_void) ?*c_void {
|
||||
|
||||
@ -523,6 +523,10 @@ pub const CLONE_NEWPID = 0x20000000;
|
||||
pub const CLONE_NEWNET = 0x40000000;
|
||||
pub const CLONE_IO = 0x80000000;
|
||||
|
||||
pub const EFD_SEMAPHORE = 1;
|
||||
pub const EFD_CLOEXEC = O_CLOEXEC;
|
||||
pub const EFD_NONBLOCK = O_NONBLOCK;
|
||||
|
||||
pub const MS_RDONLY = 1;
|
||||
pub const MS_NOSUID = 2;
|
||||
pub const MS_NODEV = 4;
|
||||
@ -1221,6 +1225,10 @@ pub fn epoll_wait(epoll_fd: i32, events: [*]epoll_event, maxevents: u32, timeout
|
||||
return syscall4(SYS_epoll_wait, @intCast(usize, epoll_fd), @ptrToInt(events), @intCast(usize, maxevents), @intCast(usize, timeout));
|
||||
}
|
||||
|
||||
pub fn eventfd(count: u32, flags: u32) usize {
|
||||
return syscall2(SYS_eventfd2, count, flags);
|
||||
}
|
||||
|
||||
pub fn timerfd_create(clockid: i32, flags: u32) usize {
|
||||
return syscall2(SYS_timerfd_create, @intCast(usize, clockid), @intCast(usize, flags));
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user