stage2 x86_64: add instruction encoder helper fn

This commit is contained in:
gracefu 2021-04-08 17:05:48 +08:00
parent d4d21dd46d
commit e1959ccd4e
No known key found for this signature in database
GPG Key ID: 2B0D39CC4E035325

View File

@ -1,4 +1,8 @@
const std = @import("std");
const testing = std.testing;
const mem = std.mem;
const assert = std.debug.assert;
const ArrayList = std.ArrayList;
const Type = @import("../Type.zig");
const DW = std.dwarf;
@ -68,6 +72,11 @@ pub const Register = enum(u8) {
return @truncate(u4, @enumToInt(self));
}
/// Like id, but only returns the lower 3 bits.
pub fn low_id(self: Register) u3 {
return @truncate(u3, @enumToInt(self));
}
/// Returns the index into `callee_preserved_regs`.
pub fn allocIndex(self: Register) ?u4 {
return switch (self) {
@ -136,6 +145,418 @@ pub const callee_preserved_regs = [_]Register{ .rax, .rcx, .rdx, .rsi, .rdi, .r8
pub const c_abi_int_param_regs = [_]Register{ .rdi, .rsi, .rdx, .rcx, .r8, .r9 };
pub const c_abi_int_return_regs = [_]Register{ .rax, .rdx };
/// Represents an unencoded x86 instruction.
///
/// Roughly based on the table headings at http://ref.x86asm.net/coder64.html
pub const Instruction = struct {
/// Opcode prefix, needed for certain rare ops (e.g. MOVSS)
opcode_prefix: ?u8 = null,
/// One-byte primary opcode
primary_opcode_1b: ?u8 = null,
/// Two-byte primary opcode (always prefixed with 0f)
primary_opcode_2b: ?u8 = null,
// TODO: Support 3-byte opcodes
/// Secondary opcode
secondary_opcode: ?u8 = null,
/// Opcode extension (to be placed in the ModR/M byte in place of reg)
opcode_extension: ?u3 = null,
/// Legacy prefixes to use with this instruction
/// Most of the time, this field will be 0 and no prefixes are added.
/// Otherwise, a prefix will be added for each field set.
legacy_prefixes: LegacyPrefixes = .{},
/// 64-bit operand size
operand_size_64: bool = false,
/// The opcode-reg field,
/// stored in the 3 least significant bits of the opcode
/// on certain instructions + REX if extended
opcode_reg: ?Register = null,
/// The reg field
reg: ?Register = null,
/// The mod + r/m field
modrm: ?ModrmEffectiveAddress = null,
/// Location of the 3rd operand, if applicable
sib: ?SibEffectiveAddress = null,
/// Number of bytes of immediate
immediate_bytes: u8 = 0,
/// The value of the immediate
immediate: u64 = 0,
/// See legacy_prefixes
pub const LegacyPrefixes = packed struct {
/// LOCK
prefix_f0: bool = false,
/// REPNZ, REPNE, REP, Scalar Double-precision
prefix_f2: bool = false,
/// REPZ, REPE, REP, Scalar Single-precision
prefix_f3: bool = false,
/// CS segment override or Branch not taken
prefix_2e: bool = false,
/// DS segment override
prefix_36: bool = false,
/// ES segment override
prefix_26: bool = false,
/// FS segment override
prefix_64: bool = false,
/// GS segment override
prefix_65: bool = false,
/// Branch taken
prefix_3e: bool = false,
/// Operand size override
prefix_66: bool = false,
/// Address size override
prefix_67: bool = false,
padding: u5 = 0,
};
/// Encodes an effective address for the Mod + R/M part of the ModR/M byte
///
/// Note that depending on the instruction, not all effective addresses are allowed.
///
/// Examples:
/// eax: .reg = .eax
/// [eax]: .mem = .eax
/// [eax + 8]: .mem_disp = .{ .reg = .eax, .disp = 8 }
/// [eax - 8]: .mem_disp = .{ .reg = .eax, .disp = -8 }
/// [55]: .disp32 = 55
pub const ModrmEffectiveAddress = union(enum) {
reg: Register,
mem: Register,
mem_disp: struct {
reg: Register,
disp: i32,
},
disp32: u32,
pub fn isExtended(self: @This()) bool {
return switch (self) {
.reg => |reg| reg.isExtended(),
.mem => |memea| memea.isExtended(),
.mem_disp => |mem_disp| mem_disp.reg.isExtended(),
.disp32 => false,
};
}
};
/// Encodes an effective address for the SIB byte
///
/// Note that depending on the instruction, not all effective addresses are allowed.
///
/// Examples:
/// [eax + ebx * 2]: .base_index = .{ .base = .eax, .index = .ebx, .scale = 2 }
/// [eax]: .base_index = .{ .base = .eax, .index = null, .scale = 1 }
/// [ebx * 2 + 256]: .index_disp = .{ .index = .ebx, .scale = 2, .disp = 256 }
/// [[ebp] + ebx * 2 + 8]: .ebp_index_disp = .{ .index = .ebx, .scale = 2, .disp = 8 }
pub const SibEffectiveAddress = union(enum) {
base_index: struct {
base: Register,
index: ?Register,
scale: u8, // 1, 2, 4, or 8
},
index_disp: struct {
index: ?Register,
scale: u8, // 1, 2, 4, or 8
disp: u32,
},
ebp_index_disp: struct {
index: ?Register,
scale: u8, // 1, 2, 4, or 8
disp: u32,
},
pub fn baseIsExtended(self: @This()) bool {
return switch (self) {
.base_index => |base_index| base_index.base.isExtended(),
.index_disp, .ebp_index_disp => false,
};
}
pub fn indexIsExtended(self: @This()) bool {
return switch (self) {
.base_index => |base_index| if (base_index.index) |idx| idx.isExtended() else false,
.index_disp => |index_disp| if (index_disp.index) |idx| idx.isExtended() else false,
.ebp_index_disp => |ebp_index_disp| if (ebp_index_disp.index) |idx| idx.isExtended() else false,
};
}
};
/// Writes the encoded Instruction to the code ArrayList
pub fn encodeInto(inst: Instruction, code: *ArrayList(u8)) !void {
// We need to write the following, in that order:
// - Legacy prefixes (0 to 13 bytes)
// - REX prefix (0 to 1 byte)
// - Opcode (1, 2, or 3 bytes)
// - ModR/M (0 or 1 byte)
// - SIB (0 or 1 byte)
// - Displacement (0, 1, 2, or 4 bytes)
// - Immediate (0, 1, 2, 4, or 8 bytes)
// By this calculation, an instruction could be up to 31 bytes long (will probably not happen)
try code.ensureCapacity(code.items.len + 31);
// Legacy prefixes
if (@bitCast(u16, inst.legacy_prefixes) != 0) {
// Hopefully this path isn't taken very often, so we'll do it the slow way for now
// LOCK
if (inst.legacy_prefixes.prefix_f0) code.appendAssumeCapacity(0xf0);
// REPNZ, REPNE, REP, Scalar Double-precision
if (inst.legacy_prefixes.prefix_f2) code.appendAssumeCapacity(0xf2);
// REPZ, REPE, REP, Scalar Single-precision
if (inst.legacy_prefixes.prefix_f3) code.appendAssumeCapacity(0xf3);
// CS segment override or Branch not taken
if (inst.legacy_prefixes.prefix_2e) code.appendAssumeCapacity(0x2e);
// DS segment override
if (inst.legacy_prefixes.prefix_36) code.appendAssumeCapacity(0x36);
// ES segment override
if (inst.legacy_prefixes.prefix_26) code.appendAssumeCapacity(0x26);
// FS segment override
if (inst.legacy_prefixes.prefix_64) code.appendAssumeCapacity(0x64);
// GS segment override
if (inst.legacy_prefixes.prefix_65) code.appendAssumeCapacity(0x65);
// Branch taken
if (inst.legacy_prefixes.prefix_3e) code.appendAssumeCapacity(0x3e);
// Operand size override
if (inst.legacy_prefixes.prefix_66) code.appendAssumeCapacity(0x66);
// Address size override
if (inst.legacy_prefixes.prefix_67) code.appendAssumeCapacity(0x67);
}
// REX prefix
//
// A REX prefix has the following form:
// 0b0100_WRXB
// 0100: fixed bits
// W: stands for "wide", indicates that the instruction uses 64-bit operands.
// R, X, and B each contain the 4th bit of a register
// these have to be set when using registers 8-15.
// R: stands for "reg", extends the reg field in the ModR/M byte.
// X: stands for "index", extends the index field in the SIB byte.
// B: stands for "base", extends either the r/m field in the ModR/M byte,
// the base field in the SIB byte,
// or the opcode reg field in the Opcode byte.
{
var value: u8 = 0x40;
if (inst.opcode_reg) |opcode_reg| {
if (opcode_reg.isExtended()) {
value |= 0x1;
}
}
if (inst.modrm) |modrm| {
if (modrm.isExtended()) {
value |= 0x1;
}
}
if (inst.sib) |sib| {
if (sib.baseIsExtended()) {
value |= 0x1;
}
if (sib.indexIsExtended()) {
value |= 0x2;
}
}
if (inst.reg) |reg| {
if (reg.isExtended()) {
value |= 0x4;
}
}
if (inst.operand_size_64) {
value |= 0x8;
}
if (value != 0x40) {
code.appendAssumeCapacity(value);
}
}
// Opcode
if (inst.primary_opcode_1b) |opcode| {
var value = opcode;
if (inst.opcode_reg) |opcode_reg| {
value |= opcode_reg.low_id();
}
code.appendAssumeCapacity(value);
} else if (inst.primary_opcode_2b) |opcode| {
code.appendAssumeCapacity(0x0f);
var value = opcode;
if (inst.opcode_reg) |opcode_reg| {
value |= opcode_reg.low_id();
}
code.appendAssumeCapacity(value);
}
var disp8: ?u8 = null;
var disp16: ?u16 = null;
var disp32: ?u32 = null;
// ModR/M
//
// Example ModR/M byte:
// c7: ModR/M byte that contains:
// 11 000 111:
// ^ ^ ^
// mod | |
// reg |
// r/m
// where mod = 11 indicates that both operands are registers,
// reg = 000 indicates that the first operand is register EAX
// r/m = 111 indicates that the second operand is register EDI (since mod = 11)
if (inst.modrm != null or inst.reg != null or inst.opcode_extension != null) {
var value: u8 = 0;
// mod + rm
if (inst.modrm) |modrm| {
switch (modrm) {
.reg => |reg| {
value |= reg.low_id();
value |= 0b11_000_000;
},
.mem => |memea| {
assert(memea.low_id() != 4 and memea.low_id() != 5);
value |= memea.low_id();
// value |= 0b00_000_000;
},
.mem_disp => |mem_disp| {
assert(mem_disp.reg.low_id() != 4);
value |= mem_disp.reg.low_id();
if (mem_disp.disp < 128) {
// Use 1 byte of displacement
value |= 0b01_000_000;
disp8 = @bitCast(u8, @intCast(i8, mem_disp.disp));
} else {
// Use all 4 bytes of displacement
value |= 0b10_000_000;
disp32 = @bitCast(u32, mem_disp.disp);
}
},
.disp32 => |d| {
value |= 0b00_000_101;
disp32 = d;
},
}
}
// reg
if (inst.reg) |reg| {
value |= @as(u8, reg.low_id()) << 3;
} else if (inst.opcode_extension) |ext| {
value |= @as(u8, ext) << 3;
}
code.appendAssumeCapacity(value);
}
// SIB
{
if (inst.sib) |sib| {
return error.TODOSIBByteForX8664;
}
}
// Displacement
//
// The size of the displacement depends on the instruction used and is very fragile.
// The bytes are simply written in LE order.
{
// These writes won't fail because we ensured capacity earlier.
if (disp8) |d|
code.appendAssumeCapacity(d)
else if (disp16) |d|
mem.writeIntLittle(u16, code.addManyAsArrayAssumeCapacity(2), d)
else if (disp32) |d|
mem.writeIntLittle(u32, code.addManyAsArrayAssumeCapacity(4), d);
}
// Immediate
//
// The size of the immediate depends on the instruction used and is very fragile.
// The bytes are simply written in LE order.
{
// These writes won't fail because we ensured capacity earlier.
if (inst.immediate_bytes == 1)
code.appendAssumeCapacity(@intCast(u8, inst.immediate))
else if (inst.immediate_bytes == 2)
mem.writeIntLittle(u16, code.addManyAsArrayAssumeCapacity(2), @intCast(u16, inst.immediate))
else if (inst.immediate_bytes == 4)
mem.writeIntLittle(u32, code.addManyAsArrayAssumeCapacity(4), @intCast(u32, inst.immediate))
else if (inst.immediate_bytes == 8)
mem.writeIntLittle(u64, code.addManyAsArrayAssumeCapacity(8), inst.immediate);
}
}
};
fn expectEncoded(inst: Instruction, expected: []const u8) !void {
var code = ArrayList(u8).init(testing.allocator);
defer code.deinit();
try inst.encodeInto(&code);
testing.expectEqualSlices(u8, expected, code.items);
}
test "x86_64 Instruction.encodeInto" {
// simple integer multiplication
// imul eax,edi
// 0faf c7
try expectEncoded(Instruction{
.primary_opcode_2b = 0xaf, // imul
.reg = .eax, // destination
.modrm = .{ .reg = .edi }, // source
}, &[_]u8{ 0x0f, 0xaf, 0xc7 });
// simple mov
// mov eax,edi
// 89 f8
try expectEncoded(Instruction{
.primary_opcode_1b = 0x89, // mov (with rm as destination)
.reg = .edi, // source
.modrm = .{ .reg = .eax }, // destination
}, &[_]u8{ 0x89, 0xf8 });
// signed integer addition of 32-bit sign extended immediate to 64 bit register
// add rcx, 2147483647
//
// Using the following opcode: REX.W + 81 /0 id, we expect the following encoding
//
// 48 : REX.W set for 64 bit operand (*r*cx)
// 81 : opcode for "<arithmetic> with immediate"
// c1 : id = rcx,
// : c1 = 11 <-- mod = 11 indicates r/m is register (rcx)
// : 000 <-- opcode_extension = 0 because opcode extension is /0. /0 specifies ADD
// : 001 <-- 001 is rcx
// ffffff7f : 2147483647
try expectEncoded(Instruction{
// REX.W +
.operand_size_64 = true,
// 81
.primary_opcode_1b = 0x81,
// /0
.opcode_extension = 0,
// rcx
.modrm = .{ .reg = .rcx },
// immediate
.immediate_bytes = 4,
.immediate = 2147483647,
}, &[_]u8{ 0x48, 0x81, 0xc1, 0xff, 0xff, 0xff, 0x7f });
}
// TODO add these registers to the enum and populate dwarfLocOp
// // Return Address register. This is stored in `0(%rsp, "")` and is not a physical register.
// RA = (16, "RA"),