Sema: if generic function evaluates to another generic function call it inline

```zig
fn foo(a: anytype, b: @TypeOf(a)) void { _ = b; }
test {
    // foo evaluates to `fn (type) void` and must be called inline
    foo(u32, u32);
}
```
This commit is contained in:
Veikka Tuominen 2022-03-10 13:04:55 +02:00
parent b9f521b402
commit e0fb0770d1
3 changed files with 293 additions and 280 deletions

View File

@ -4474,8 +4474,26 @@ fn analyzeCall(
const is_comptime_call = block.is_comptime or modifier == .compile_time or const is_comptime_call = block.is_comptime or modifier == .compile_time or
try sema.typeRequiresComptime(block, func_src, func_ty_info.return_type); try sema.typeRequiresComptime(block, func_src, func_ty_info.return_type);
const is_inline_call = is_comptime_call or modifier == .always_inline or var is_inline_call = is_comptime_call or modifier == .always_inline or
func_ty_info.cc == .Inline; func_ty_info.cc == .Inline;
if (!is_inline_call and func_ty_info.is_generic) {
if (sema.instantiateGenericCall(
block,
func,
func_src,
call_src,
func_ty_info,
ensure_result_used,
uncasted_args,
)) |some| {
return some;
} else |err| switch (err) {
error.GenericPoison => is_inline_call = true,
else => |e| return e,
}
}
const result: Air.Inst.Ref = if (is_inline_call) res: { const result: Air.Inst.Ref = if (is_inline_call) res: {
const func_val = try sema.resolveConstValue(block, func_src, func); const func_val = try sema.resolveConstValue(block, func_src, func);
const module_fn = switch (func_val.tag()) { const module_fn = switch (func_val.tag()) {
@ -4728,278 +4746,8 @@ fn analyzeCall(
try wip_captures.finalize(); try wip_captures.finalize();
break :res res2; break :res res2;
} else if (func_ty_info.is_generic) res: {
const func_val = try sema.resolveConstValue(block, func_src, func);
const module_fn = switch (func_val.tag()) {
.function => func_val.castTag(.function).?.data,
.decl_ref => func_val.castTag(.decl_ref).?.data.val.castTag(.function).?.data,
else => unreachable,
};
// Check the Module's generic function map with an adapted context, so that we
// can match against `uncasted_args` rather than doing the work below to create a
// generic Scope only to junk it if it matches an existing instantiation.
const namespace = module_fn.owner_decl.src_namespace;
const fn_zir = namespace.file_scope.zir;
const fn_info = fn_zir.getFnInfo(module_fn.zir_body_inst);
const zir_tags = fn_zir.instructions.items(.tag);
// This hash must match `Module.MonomorphedFuncsContext.hash`.
// For parameters explicitly marked comptime and simple parameter type expressions,
// we know whether a parameter is elided from a monomorphed function, and can
// use it in the hash here. However, for parameter type expressions that are not
// explicitly marked comptime and rely on previous parameter comptime values, we
// don't find out until after generating a monomorphed function whether the parameter
// type ended up being a "must-be-comptime-known" type.
var hasher = std.hash.Wyhash.init(0);
std.hash.autoHash(&hasher, @ptrToInt(module_fn));
const comptime_tvs = try sema.arena.alloc(TypedValue, func_ty_info.param_types.len);
for (func_ty_info.param_types) |param_ty, i| {
const is_comptime = func_ty_info.paramIsComptime(i);
if (is_comptime) {
const arg_src = call_src; // TODO better source location
const casted_arg = try sema.coerce(block, param_ty, uncasted_args[i], arg_src);
if (try sema.resolveMaybeUndefVal(block, arg_src, casted_arg)) |arg_val| {
if (param_ty.tag() != .generic_poison) {
arg_val.hash(param_ty, &hasher);
}
comptime_tvs[i] = .{
// This will be different than `param_ty` in the case of `generic_poison`.
.ty = sema.typeOf(casted_arg),
.val = arg_val,
};
} else {
return sema.failWithNeededComptime(block, arg_src);
}
} else {
comptime_tvs[i] = .{
.ty = sema.typeOf(uncasted_args[i]),
.val = Value.initTag(.generic_poison),
};
}
}
const precomputed_hash = hasher.final();
const adapter: GenericCallAdapter = .{
.generic_fn = module_fn,
.precomputed_hash = precomputed_hash,
.func_ty_info = func_ty_info,
.comptime_tvs = comptime_tvs,
};
const gop = try mod.monomorphed_funcs.getOrPutAdapted(gpa, {}, adapter);
if (gop.found_existing) {
const callee_func = gop.key_ptr.*;
break :res try sema.finishGenericCall(
block,
call_src,
callee_func,
func_src,
uncasted_args,
fn_info,
zir_tags,
);
}
const new_module_func = try gpa.create(Module.Fn);
gop.key_ptr.* = new_module_func;
{
errdefer gpa.destroy(new_module_func);
const remove_adapter: GenericRemoveAdapter = .{
.precomputed_hash = precomputed_hash,
};
errdefer assert(mod.monomorphed_funcs.removeAdapted(new_module_func, remove_adapter));
try namespace.anon_decls.ensureUnusedCapacity(gpa, 1);
// Create a Decl for the new function.
const src_decl = namespace.getDecl();
// TODO better names for generic function instantiations
const name_index = mod.getNextAnonNameIndex();
const decl_name = try std.fmt.allocPrintZ(gpa, "{s}__anon_{d}", .{
module_fn.owner_decl.name, name_index,
});
const new_decl = try mod.allocateNewDecl(decl_name, namespace, module_fn.owner_decl.src_node, src_decl.src_scope);
new_decl.src_line = module_fn.owner_decl.src_line;
new_decl.is_pub = module_fn.owner_decl.is_pub;
new_decl.is_exported = module_fn.owner_decl.is_exported;
new_decl.has_align = module_fn.owner_decl.has_align;
new_decl.has_linksection_or_addrspace = module_fn.owner_decl.has_linksection_or_addrspace;
new_decl.@"addrspace" = module_fn.owner_decl.@"addrspace";
new_decl.zir_decl_index = module_fn.owner_decl.zir_decl_index;
new_decl.alive = true; // This Decl is called at runtime.
new_decl.has_tv = true;
new_decl.owns_tv = true;
new_decl.analysis = .in_progress;
new_decl.generation = mod.generation;
namespace.anon_decls.putAssumeCapacityNoClobber(new_decl, {});
// The generic function Decl is guaranteed to be the first dependency
// of each of its instantiations.
assert(new_decl.dependencies.keys().len == 0);
try mod.declareDeclDependency(new_decl, module_fn.owner_decl);
var new_decl_arena = std.heap.ArenaAllocator.init(sema.gpa);
errdefer new_decl_arena.deinit();
const new_decl_arena_allocator = new_decl_arena.allocator();
// Re-run the block that creates the function, with the comptime parameters
// pre-populated inside `inst_map`. This causes `param_comptime` and
// `param_anytype_comptime` ZIR instructions to be ignored, resulting in a
// new, monomorphized function, with the comptime parameters elided.
var child_sema: Sema = .{
.mod = mod,
.gpa = gpa,
.arena = sema.arena,
.perm_arena = new_decl_arena_allocator,
.code = fn_zir,
.owner_decl = new_decl,
.func = null,
.fn_ret_ty = Type.void,
.owner_func = null,
.comptime_args = try new_decl_arena_allocator.alloc(TypedValue, uncasted_args.len),
.comptime_args_fn_inst = module_fn.zir_body_inst,
.preallocated_new_func = new_module_func,
};
defer child_sema.deinit();
var wip_captures = try WipCaptureScope.init(gpa, sema.perm_arena, new_decl.src_scope);
defer wip_captures.deinit();
var child_block: Block = .{
.parent = null,
.sema = &child_sema,
.src_decl = new_decl,
.namespace = namespace,
.wip_capture_scope = wip_captures.scope,
.instructions = .{},
.inlining = null,
.is_comptime = true,
};
defer {
child_block.instructions.deinit(gpa);
child_block.params.deinit(gpa);
}
try child_sema.inst_map.ensureUnusedCapacity(gpa, @intCast(u32, uncasted_args.len));
var arg_i: usize = 0;
for (fn_info.param_body) |inst| {
var is_comptime = false;
var is_anytype = false;
switch (zir_tags[inst]) {
.param => {
is_comptime = func_ty_info.paramIsComptime(arg_i);
},
.param_comptime => {
is_comptime = true;
},
.param_anytype => {
is_anytype = true;
is_comptime = func_ty_info.paramIsComptime(arg_i);
},
.param_anytype_comptime => {
is_anytype = true;
is_comptime = true;
},
else => continue,
}
const arg_src = call_src; // TODO: better source location
const arg = uncasted_args[arg_i];
if (is_comptime) {
if (try sema.resolveMaybeUndefVal(block, arg_src, arg)) |arg_val| {
const child_arg = try child_sema.addConstant(sema.typeOf(arg), arg_val);
child_sema.inst_map.putAssumeCapacityNoClobber(inst, child_arg);
} else {
return sema.failWithNeededComptime(block, arg_src);
}
} else if (is_anytype) {
const arg_ty = sema.typeOf(arg);
if (try sema.typeRequiresComptime(block, arg_src, arg_ty)) {
const arg_val = try sema.resolveConstValue(block, arg_src, arg);
const child_arg = try child_sema.addConstant(arg_ty, arg_val);
child_sema.inst_map.putAssumeCapacityNoClobber(inst, child_arg);
} else {
// We insert into the map an instruction which is runtime-known
// but has the type of the argument.
const child_arg = try child_block.addArg(arg_ty);
child_sema.inst_map.putAssumeCapacityNoClobber(inst, child_arg);
}
}
arg_i += 1;
}
const new_func_inst = child_sema.resolveBody(&child_block, fn_info.param_body, fn_info.param_body_inst) catch |err| {
// TODO look up the compile error that happened here and attach a note to it
// pointing here, at the generic instantiation callsite.
if (sema.owner_func) |owner_func| {
owner_func.state = .dependency_failure;
} else {
sema.owner_decl.analysis = .dependency_failure;
}
return err;
};
const new_func_val = child_sema.resolveConstValue(&child_block, .unneeded, new_func_inst) catch unreachable;
const new_func = new_func_val.castTag(.function).?.data;
assert(new_func == new_module_func);
arg_i = 0;
for (fn_info.param_body) |inst| {
switch (zir_tags[inst]) {
.param_comptime, .param_anytype_comptime, .param, .param_anytype => {},
else => continue,
}
const arg = child_sema.inst_map.get(inst).?;
const copied_arg_ty = try child_sema.typeOf(arg).copy(new_decl_arena_allocator);
if (child_sema.resolveMaybeUndefValAllowVariables(
&child_block,
.unneeded,
arg,
) catch unreachable) |arg_val| {
child_sema.comptime_args[arg_i] = .{
.ty = copied_arg_ty,
.val = try arg_val.copy(new_decl_arena_allocator),
};
} else {
child_sema.comptime_args[arg_i] = .{
.ty = copied_arg_ty,
.val = Value.initTag(.generic_poison),
};
}
arg_i += 1;
}
try wip_captures.finalize();
// Populate the Decl ty/val with the function and its type.
new_decl.ty = try child_sema.typeOf(new_func_inst).copy(new_decl_arena_allocator);
new_decl.val = try Value.Tag.function.create(new_decl_arena_allocator, new_func);
new_decl.analysis = .complete;
log.debug("generic function '{s}' instantiated with type {}", .{
new_decl.name, new_decl.ty,
});
assert(!new_decl.ty.fnInfo().is_generic);
// Queue up a `codegen_func` work item for the new Fn. The `comptime_args` field
// will be populated, ensuring it will have `analyzeBody` called with the ZIR
// parameters mapped appropriately.
try mod.comp.bin_file.allocateDeclIndexes(new_decl);
try mod.comp.work_queue.writeItem(.{ .codegen_func = new_func });
try new_decl.finalizeNewArena(&new_decl_arena);
}
break :res try sema.finishGenericCall(
block,
call_src,
new_module_func,
func_src,
uncasted_args,
fn_info,
zir_tags,
);
} else res: { } else res: {
assert(!func_ty_info.is_generic);
try sema.requireRuntimeBlock(block, call_src); try sema.requireRuntimeBlock(block, call_src);
const args = try sema.arena.alloc(Air.Inst.Ref, uncasted_args.len); const args = try sema.arena.alloc(Air.Inst.Ref, uncasted_args.len);
@ -5037,16 +4785,274 @@ fn analyzeCall(
return result; return result;
} }
fn finishGenericCall( fn instantiateGenericCall(
sema: *Sema, sema: *Sema,
block: *Block, block: *Block,
call_src: LazySrcLoc, func: Air.Inst.Ref,
callee: *Module.Fn,
func_src: LazySrcLoc, func_src: LazySrcLoc,
call_src: LazySrcLoc,
func_ty_info: Type.Payload.Function.Data,
ensure_result_used: bool,
uncasted_args: []const Air.Inst.Ref, uncasted_args: []const Air.Inst.Ref,
fn_info: Zir.FnInfo,
zir_tags: []const Zir.Inst.Tag,
) CompileError!Air.Inst.Ref { ) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const gpa = sema.gpa;
const func_val = try sema.resolveConstValue(block, func_src, func);
const module_fn = switch (func_val.tag()) {
.function => func_val.castTag(.function).?.data,
.decl_ref => func_val.castTag(.decl_ref).?.data.val.castTag(.function).?.data,
else => unreachable,
};
// Check the Module's generic function map with an adapted context, so that we
// can match against `uncasted_args` rather than doing the work below to create a
// generic Scope only to junk it if it matches an existing instantiation.
const namespace = module_fn.owner_decl.src_namespace;
const fn_zir = namespace.file_scope.zir;
const fn_info = fn_zir.getFnInfo(module_fn.zir_body_inst);
const zir_tags = fn_zir.instructions.items(.tag);
// This hash must match `Module.MonomorphedFuncsContext.hash`.
// For parameters explicitly marked comptime and simple parameter type expressions,
// we know whether a parameter is elided from a monomorphed function, and can
// use it in the hash here. However, for parameter type expressions that are not
// explicitly marked comptime and rely on previous parameter comptime values, we
// don't find out until after generating a monomorphed function whether the parameter
// type ended up being a "must-be-comptime-known" type.
var hasher = std.hash.Wyhash.init(0);
std.hash.autoHash(&hasher, @ptrToInt(module_fn));
const comptime_tvs = try sema.arena.alloc(TypedValue, func_ty_info.param_types.len);
for (func_ty_info.param_types) |param_ty, i| {
const is_comptime = func_ty_info.paramIsComptime(i);
if (is_comptime) {
const arg_src = call_src; // TODO better source location
const casted_arg = try sema.coerce(block, param_ty, uncasted_args[i], arg_src);
if (try sema.resolveMaybeUndefVal(block, arg_src, casted_arg)) |arg_val| {
if (param_ty.tag() != .generic_poison) {
arg_val.hash(param_ty, &hasher);
}
comptime_tvs[i] = .{
// This will be different than `param_ty` in the case of `generic_poison`.
.ty = sema.typeOf(casted_arg),
.val = arg_val,
};
} else {
return sema.failWithNeededComptime(block, arg_src);
}
} else {
comptime_tvs[i] = .{
.ty = sema.typeOf(uncasted_args[i]),
.val = Value.initTag(.generic_poison),
};
}
}
const precomputed_hash = hasher.final();
const adapter: GenericCallAdapter = .{
.generic_fn = module_fn,
.precomputed_hash = precomputed_hash,
.func_ty_info = func_ty_info,
.comptime_tvs = comptime_tvs,
};
const gop = try mod.monomorphed_funcs.getOrPutAdapted(gpa, {}, adapter);
if (!gop.found_existing) {
const new_module_func = try gpa.create(Module.Fn);
gop.key_ptr.* = new_module_func;
errdefer gpa.destroy(new_module_func);
const remove_adapter: GenericRemoveAdapter = .{
.precomputed_hash = precomputed_hash,
};
errdefer assert(mod.monomorphed_funcs.removeAdapted(new_module_func, remove_adapter));
try namespace.anon_decls.ensureUnusedCapacity(gpa, 1);
// Create a Decl for the new function.
const src_decl = namespace.getDecl();
// TODO better names for generic function instantiations
const name_index = mod.getNextAnonNameIndex();
const decl_name = try std.fmt.allocPrintZ(gpa, "{s}__anon_{d}", .{
module_fn.owner_decl.name, name_index,
});
const new_decl = try mod.allocateNewDecl(decl_name, namespace, module_fn.owner_decl.src_node, src_decl.src_scope);
errdefer new_decl.destroy(mod);
new_decl.src_line = module_fn.owner_decl.src_line;
new_decl.is_pub = module_fn.owner_decl.is_pub;
new_decl.is_exported = module_fn.owner_decl.is_exported;
new_decl.has_align = module_fn.owner_decl.has_align;
new_decl.has_linksection_or_addrspace = module_fn.owner_decl.has_linksection_or_addrspace;
new_decl.@"addrspace" = module_fn.owner_decl.@"addrspace";
new_decl.zir_decl_index = module_fn.owner_decl.zir_decl_index;
new_decl.alive = true; // This Decl is called at runtime.
new_decl.analysis = .in_progress;
new_decl.generation = mod.generation;
namespace.anon_decls.putAssumeCapacityNoClobber(new_decl, {});
errdefer assert(namespace.anon_decls.orderedRemove(new_decl));
// The generic function Decl is guaranteed to be the first dependency
// of each of its instantiations.
assert(new_decl.dependencies.keys().len == 0);
try mod.declareDeclDependency(new_decl, module_fn.owner_decl);
errdefer assert(module_fn.owner_decl.dependants.orderedRemove(new_decl));
var new_decl_arena = std.heap.ArenaAllocator.init(sema.gpa);
errdefer new_decl_arena.deinit();
const new_decl_arena_allocator = new_decl_arena.allocator();
// Re-run the block that creates the function, with the comptime parameters
// pre-populated inside `inst_map`. This causes `param_comptime` and
// `param_anytype_comptime` ZIR instructions to be ignored, resulting in a
// new, monomorphized function, with the comptime parameters elided.
var child_sema: Sema = .{
.mod = mod,
.gpa = gpa,
.arena = sema.arena,
.perm_arena = new_decl_arena_allocator,
.code = fn_zir,
.owner_decl = new_decl,
.func = null,
.fn_ret_ty = Type.void,
.owner_func = null,
.comptime_args = try new_decl_arena_allocator.alloc(TypedValue, uncasted_args.len),
.comptime_args_fn_inst = module_fn.zir_body_inst,
.preallocated_new_func = new_module_func,
};
defer child_sema.deinit();
var wip_captures = try WipCaptureScope.init(gpa, sema.perm_arena, new_decl.src_scope);
defer wip_captures.deinit();
var child_block: Block = .{
.parent = null,
.sema = &child_sema,
.src_decl = new_decl,
.namespace = namespace,
.wip_capture_scope = wip_captures.scope,
.instructions = .{},
.inlining = null,
.is_comptime = true,
};
defer {
child_block.instructions.deinit(gpa);
child_block.params.deinit(gpa);
}
try child_sema.inst_map.ensureUnusedCapacity(gpa, @intCast(u32, uncasted_args.len));
var arg_i: usize = 0;
for (fn_info.param_body) |inst| {
var is_comptime = false;
var is_anytype = false;
switch (zir_tags[inst]) {
.param => {
is_comptime = func_ty_info.paramIsComptime(arg_i);
},
.param_comptime => {
is_comptime = true;
},
.param_anytype => {
is_anytype = true;
is_comptime = func_ty_info.paramIsComptime(arg_i);
},
.param_anytype_comptime => {
is_anytype = true;
is_comptime = true;
},
else => continue,
}
const arg_src = call_src; // TODO: better source location
const arg = uncasted_args[arg_i];
if (is_comptime) {
if (try sema.resolveMaybeUndefVal(block, arg_src, arg)) |arg_val| {
const child_arg = try child_sema.addConstant(sema.typeOf(arg), arg_val);
child_sema.inst_map.putAssumeCapacityNoClobber(inst, child_arg);
} else {
return sema.failWithNeededComptime(block, arg_src);
}
} else if (is_anytype) {
const arg_ty = sema.typeOf(arg);
if (try sema.typeRequiresComptime(block, arg_src, arg_ty)) {
const arg_val = try sema.resolveConstValue(block, arg_src, arg);
const child_arg = try child_sema.addConstant(arg_ty, arg_val);
child_sema.inst_map.putAssumeCapacityNoClobber(inst, child_arg);
} else {
// We insert into the map an instruction which is runtime-known
// but has the type of the argument.
const child_arg = try child_block.addArg(arg_ty);
child_sema.inst_map.putAssumeCapacityNoClobber(inst, child_arg);
}
}
arg_i += 1;
}
const new_func_inst = child_sema.resolveBody(&child_block, fn_info.param_body, fn_info.param_body_inst) catch |err| {
// TODO look up the compile error that happened here and attach a note to it
// pointing here, at the generic instantiation callsite.
if (sema.owner_func) |owner_func| {
owner_func.state = .dependency_failure;
} else {
sema.owner_decl.analysis = .dependency_failure;
}
return err;
};
const new_func_val = child_sema.resolveConstValue(&child_block, .unneeded, new_func_inst) catch unreachable;
const new_func = new_func_val.castTag(.function).?.data;
assert(new_func == new_module_func);
arg_i = 0;
for (fn_info.param_body) |inst| {
switch (zir_tags[inst]) {
.param_comptime, .param_anytype_comptime, .param, .param_anytype => {},
else => continue,
}
const arg = child_sema.inst_map.get(inst).?;
const copied_arg_ty = try child_sema.typeOf(arg).copy(new_decl_arena_allocator);
if (child_sema.resolveMaybeUndefValAllowVariables(
&child_block,
.unneeded,
arg,
) catch unreachable) |arg_val| {
child_sema.comptime_args[arg_i] = .{
.ty = copied_arg_ty,
.val = try arg_val.copy(new_decl_arena_allocator),
};
} else {
child_sema.comptime_args[arg_i] = .{
.ty = copied_arg_ty,
.val = Value.initTag(.generic_poison),
};
}
arg_i += 1;
}
try wip_captures.finalize();
// Populate the Decl ty/val with the function and its type.
new_decl.ty = try child_sema.typeOf(new_func_inst).copy(new_decl_arena_allocator);
// If the call evaluated to a generic type return errror and call inline.
if (new_decl.ty.fnInfo().is_generic) return error.GenericPoison;
new_decl.val = try Value.Tag.function.create(new_decl_arena_allocator, new_func);
new_decl.has_tv = true;
new_decl.owns_tv = true;
new_decl.analysis = .complete;
log.debug("generic function '{s}' instantiated with type {}", .{
new_decl.name, new_decl.ty,
});
// Queue up a `codegen_func` work item for the new Fn. The `comptime_args` field
// will be populated, ensuring it will have `analyzeBody` called with the ZIR
// parameters mapped appropriately.
try mod.comp.bin_file.allocateDeclIndexes(new_decl);
try mod.comp.work_queue.writeItem(.{ .codegen_func = new_func });
try new_decl.finalizeNewArena(&new_decl_arena);
}
const callee = gop.key_ptr.*;
const callee_inst = try sema.analyzeDeclVal(block, func_src, callee.owner_decl); const callee_inst = try sema.analyzeDeclVal(block, func_src, callee.owner_decl);
// Make a runtime call to the new function, making sure to omit the comptime args. // Make a runtime call to the new function, making sure to omit the comptime args.
@ -5106,6 +5112,10 @@ fn finishGenericCall(
} }, } },
}); });
sema.appendRefsAssumeCapacity(runtime_args); sema.appendRefsAssumeCapacity(runtime_args);
if (ensure_result_used) {
try sema.ensureResultUsed(block, func_inst, call_src);
}
return func_inst; return func_inst;
} }

View File

@ -147,6 +147,7 @@ test {
_ = @import("behavior/saturating_arithmetic.zig"); _ = @import("behavior/saturating_arithmetic.zig");
_ = @import("behavior/widening.zig"); _ = @import("behavior/widening.zig");
_ = @import("behavior/bugs/2114.zig"); _ = @import("behavior/bugs/2114.zig");
_ = @import("behavior/bugs/3779.zig");
_ = @import("behavior/union_with_members.zig"); _ = @import("behavior/union_with_members.zig");
if (builtin.zig_backend == .stage1) { if (builtin.zig_backend == .stage1) {
@ -160,7 +161,6 @@ test {
_ = @import("behavior/bugs/920.zig"); _ = @import("behavior/bugs/920.zig");
_ = @import("behavior/bugs/1120.zig"); _ = @import("behavior/bugs/1120.zig");
_ = @import("behavior/bugs/1851.zig"); _ = @import("behavior/bugs/1851.zig");
_ = @import("behavior/bugs/3779.zig");
_ = @import("behavior/bugs/6456.zig"); _ = @import("behavior/bugs/6456.zig");
_ = @import("behavior/bugs/6781.zig"); _ = @import("behavior/bugs/6781.zig");
_ = @import("behavior/bugs/7027.zig"); _ = @import("behavior/bugs/7027.zig");

View File

@ -1,11 +1,13 @@
const std = @import("std"); const std = @import("std");
const builtin = @import("builtin");
const TestEnum = enum { TestEnumValue }; const TestEnum = enum { TestEnumValue };
const tag_name = @tagName(TestEnum.TestEnumValue); const tag_name = @tagName(TestEnum.TestEnumValue);
const ptr_tag_name: [*:0]const u8 = tag_name; const ptr_tag_name: [*:0]const u8 = tag_name;
test "@tagName() returns a string literal" { test "@tagName() returns a string literal" {
try std.testing.expectEqual([:0]const u8, @TypeOf(tag_name)); if (builtin.zig_backend == .stage1) return error.SkipZigTest; // stage1 gets the type wrong
try std.testing.expectEqual(*const [13:0]u8, @TypeOf(tag_name));
try std.testing.expectEqualStrings("TestEnumValue", tag_name); try std.testing.expectEqualStrings("TestEnumValue", tag_name);
try std.testing.expectEqualStrings("TestEnumValue", ptr_tag_name[0..tag_name.len]); try std.testing.expectEqualStrings("TestEnumValue", ptr_tag_name[0..tag_name.len]);
} }
@ -15,7 +17,8 @@ const error_name = @errorName(TestError.TestErrorCode);
const ptr_error_name: [*:0]const u8 = error_name; const ptr_error_name: [*:0]const u8 = error_name;
test "@errorName() returns a string literal" { test "@errorName() returns a string literal" {
try std.testing.expectEqual([:0]const u8, @TypeOf(error_name)); if (builtin.zig_backend == .stage1) return error.SkipZigTest; // stage1 gets the type wrong
try std.testing.expectEqual(*const [13:0]u8, @TypeOf(error_name));
try std.testing.expectEqualStrings("TestErrorCode", error_name); try std.testing.expectEqualStrings("TestErrorCode", error_name);
try std.testing.expectEqualStrings("TestErrorCode", ptr_error_name[0..error_name.len]); try std.testing.expectEqualStrings("TestErrorCode", ptr_error_name[0..error_name.len]);
} }