one kqueue per thread

This commit is contained in:
Andrew Kelley 2025-10-23 03:21:32 -07:00
parent 41070932f8
commit dd945bf1f8
2 changed files with 817 additions and 44 deletions

View File

@ -67,8 +67,8 @@ const Fiber = struct {
const min_stack_size = 4 * 1024 * 1024;
const max_context_align: Alignment = .@"16";
const max_context_size = max_context_align.forward(1024);
const max_closure_size: usize = @max(@sizeOf(AsyncClosure), @sizeOf(DetachedClosure));
const max_closure_align: Alignment = .max(.of(AsyncClosure), .of(DetachedClosure));
const max_closure_size: usize = @sizeOf(AsyncClosure);
const max_closure_align: Alignment = .of(AsyncClosure);
const allocation_size = std.mem.alignForward(
usize,
max_closure_align.max(max_context_align).forward(
@ -886,7 +886,7 @@ fn concurrent(
.rip = @intFromPtr(&fiberEntry),
},
.aarch64 => .{
.sp = @intFromPtr(closure) - @sizeOf(usize) - 1,
.sp = @intFromPtr(closure),
.fp = 0,
.pc = @intFromPtr(&fiberEntry),
},
@ -910,34 +910,6 @@ fn concurrent(
return @ptrCast(fiber);
}
const DetachedClosure = struct {
event_loop: *EventLoop,
fiber: *Fiber,
start: *const fn (context: *const anyopaque) void,
detached_queue_node: std.DoublyLinkedList.Node,
fn contextPointer(closure: *DetachedClosure) [*]align(Fiber.max_context_align.toByteUnits()) u8 {
return @alignCast(@as([*]u8, @ptrCast(closure)) + @sizeOf(DetachedClosure));
}
fn call(closure: *DetachedClosure, message: *const SwitchMessage) callconv(.withStackAlign(.c, @alignOf(DetachedClosure))) noreturn {
message.handle(closure.event_loop);
std.log.debug("{*} performing async detached", .{closure.fiber});
closure.start(closure.contextPointer());
const awaiter = @atomicRmw(?*Fiber, &closure.fiber.awaiter, .Xchg, Fiber.finished, .acq_rel);
closure.event_loop.yield(awaiter, pending_task: {
closure.event_loop.detached.mutex.lock(closure.event_loop.io()) catch |err| switch (err) {
error.Canceled => break :pending_task .nothing,
};
defer closure.event_loop.detached.mutex.unlock(closure.event_loop.io());
if (closure.detached_queue_node.next == &closure.detached_queue_node) break :pending_task .nothing;
closure.event_loop.detached.list.remove(&closure.detached_queue_node);
break :pending_task .recycle;
});
unreachable; // switched to dead fiber
}
};
fn await(
userdata: ?*anyopaque,
any_future: *std.Io.AnyFuture,

View File

@ -9,23 +9,795 @@ const net = std.Io.net;
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const Alignment = std.mem.Alignment;
const posix = std.posix;
const IpAddress = std.Io.net.IpAddress;
const errnoBug = std.Io.Threaded.errnoBug;
const posix = std.posix;
/// Must be a thread-safe allocator.
gpa: Allocator,
mutex: std.Thread.Mutex,
main_fiber_buffer: [@sizeOf(Fiber) + Fiber.max_result_size]u8 align(@alignOf(Fiber)),
threads: Thread.List,
pub fn init(gpa: Allocator) Kqueue {
return .{
.gpa = gpa,
/// Empirically saw >128KB being used by the self-hosted backend to panic.
const idle_stack_size = 256 * 1024;
const max_idle_search = 4;
const max_steal_ready_search = 4;
const changes_buffer_len = 64;
const Thread = struct {
thread: std.Thread,
idle_context: Context,
current_context: *Context,
ready_queue: ?*Fiber,
kq_fd: posix.fd_t,
idle_search_index: u32,
steal_ready_search_index: u32,
const canceling: ?*Thread = @ptrFromInt(@alignOf(Thread));
threadlocal var self: *Thread = undefined;
fn current() *Thread {
return self;
}
fn currentFiber(thread: *Thread) *Fiber {
return @fieldParentPtr("context", thread.current_context);
}
const List = struct {
allocated: []Thread,
reserved: u32,
active: u32,
};
};
const Fiber = struct {
required_align: void align(4),
context: Context,
awaiter: ?*Fiber,
queue_next: ?*Fiber,
cancel_thread: ?*Thread,
awaiting_completions: std.StaticBitSet(3),
const finished: ?*Fiber = @ptrFromInt(@alignOf(Thread));
const max_result_align: Alignment = .@"16";
const max_result_size = max_result_align.forward(64);
/// This includes any stack realignments that need to happen, and also the
/// initial frame return address slot and argument frame, depending on target.
const min_stack_size = 4 * 1024 * 1024;
const max_context_align: Alignment = .@"16";
const max_context_size = max_context_align.forward(1024);
const max_closure_size: usize = @sizeOf(AsyncClosure);
const max_closure_align: Alignment = .of(AsyncClosure);
const allocation_size = std.mem.alignForward(
usize,
max_closure_align.max(max_context_align).forward(
max_result_align.forward(@sizeOf(Fiber)) + max_result_size + min_stack_size,
) + max_closure_size + max_context_size,
std.heap.page_size_max,
);
fn allocate(k: *Kqueue) error{OutOfMemory}!*Fiber {
return @ptrCast(try k.gpa.alignedAlloc(u8, .of(Fiber), allocation_size));
}
fn allocatedSlice(f: *Fiber) []align(@alignOf(Fiber)) u8 {
return @as([*]align(@alignOf(Fiber)) u8, @ptrCast(f))[0..allocation_size];
}
fn allocatedEnd(f: *Fiber) [*]u8 {
const allocated_slice = f.allocatedSlice();
return allocated_slice[allocated_slice.len..].ptr;
}
fn resultPointer(f: *Fiber, comptime Result: type) *Result {
return @ptrCast(@alignCast(f.resultBytes(.of(Result))));
}
fn resultBytes(f: *Fiber, alignment: Alignment) [*]u8 {
return @ptrFromInt(alignment.forward(@intFromPtr(f) + @sizeOf(Fiber)));
}
fn enterCancelRegion(fiber: *Fiber, thread: *Thread) error{Canceled}!void {
if (@cmpxchgStrong(
?*Thread,
&fiber.cancel_thread,
null,
thread,
.acq_rel,
.acquire,
)) |cancel_thread| {
assert(cancel_thread == Thread.canceling);
return error.Canceled;
}
}
fn exitCancelRegion(fiber: *Fiber, thread: *Thread) void {
if (@cmpxchgStrong(
?*Thread,
&fiber.cancel_thread,
thread,
null,
.acq_rel,
.acquire,
)) |cancel_thread| assert(cancel_thread == Thread.canceling);
}
const Queue = struct { head: *Fiber, tail: *Fiber };
};
fn recycle(k: *Kqueue, fiber: *Fiber) void {
std.log.debug("recyling {*}", .{fiber});
assert(fiber.queue_next == null);
k.gpa.free(fiber.allocatedSlice());
}
pub fn init(k: *Kqueue, gpa: Allocator) !void {
const threads_size = @max(std.Thread.getCpuCount() catch 1, 1) * @sizeOf(Thread);
const idle_stack_end_offset = std.mem.alignForward(usize, threads_size + idle_stack_size, std.heap.page_size_max);
const allocated_slice = try gpa.alignedAlloc(u8, .of(Thread), idle_stack_end_offset);
errdefer gpa.free(allocated_slice);
k.* = .{
.gpa = gpa,
.mutex = .{},
.main_fiber_buffer = undefined,
.threads = .{
.allocated = @ptrCast(allocated_slice[0..threads_size]),
.reserved = 1,
.active = 1,
},
};
const main_fiber: *Fiber = @ptrCast(&k.main_fiber_buffer);
main_fiber.* = .{
.required_align = {},
.context = undefined,
.awaiter = null,
.queue_next = null,
.cancel_thread = null,
.awaiting_completions = .initEmpty(),
};
const main_thread = &k.threads.allocated[0];
Thread.self = main_thread;
const idle_stack_end: [*]align(16) usize = @ptrCast(@alignCast(allocated_slice[idle_stack_end_offset..].ptr));
(idle_stack_end - 1)[0..1].* = .{@intFromPtr(k)};
main_thread.* = .{
.thread = undefined,
.idle_context = switch (builtin.cpu.arch) {
.aarch64 => .{
.sp = @intFromPtr(idle_stack_end),
.fp = 0,
.pc = @intFromPtr(&mainIdleEntry),
.x18 = asm (""
: [x18] "={x18}" (-> u64),
),
},
.x86_64 => .{
.rsp = @intFromPtr(idle_stack_end - 1),
.rbp = 0,
.rip = @intFromPtr(&mainIdleEntry),
},
else => @compileError("unimplemented architecture"),
},
.current_context = &main_fiber.context,
.ready_queue = null,
.kq_fd = try posix.kqueue(),
.idle_search_index = 1,
.steal_ready_search_index = 1,
};
errdefer std.posix.close(main_thread.kq_fd);
std.log.debug("created main idle {*}", .{&main_thread.idle_context});
std.log.debug("created main {*}", .{main_fiber});
}
pub fn deinit(k: *Kqueue) void {
const active_threads = @atomicLoad(u32, &k.threads.active, .acquire);
for (k.threads.allocated[0..active_threads]) |*thread| {
const ready_fiber = @atomicLoad(?*Fiber, &thread.ready_queue, .monotonic);
assert(ready_fiber == null or ready_fiber == Fiber.finished); // pending async
}
k.yield(null, .exit);
const allocated_ptr: [*]align(@alignOf(Thread)) u8 = @ptrCast(@alignCast(k.threads.allocated.ptr));
const idle_stack_end_offset = std.mem.alignForward(usize, k.threads.allocated.len * @sizeOf(Thread) + idle_stack_size, std.heap.page_size_max);
for (k.threads.allocated[1..active_threads]) |*thread| thread.thread.join();
k.gpa.free(allocated_ptr[0..idle_stack_end_offset]);
k.* = undefined;
}
fn findReadyFiber(k: *Kqueue, thread: *Thread) ?*Fiber {
if (@atomicRmw(?*Fiber, &thread.ready_queue, .Xchg, Fiber.finished, .acquire)) |ready_fiber| {
@atomicStore(?*Fiber, &thread.ready_queue, ready_fiber.queue_next, .release);
ready_fiber.queue_next = null;
return ready_fiber;
}
const active_threads = @atomicLoad(u32, &k.threads.active, .acquire);
for (0..@min(max_steal_ready_search, active_threads)) |_| {
defer thread.steal_ready_search_index += 1;
if (thread.steal_ready_search_index == active_threads) thread.steal_ready_search_index = 0;
const steal_ready_search_thread = &k.threads.allocated[0..active_threads][thread.steal_ready_search_index];
if (steal_ready_search_thread == thread) continue;
const ready_fiber = @atomicLoad(?*Fiber, &steal_ready_search_thread.ready_queue, .acquire) orelse continue;
if (ready_fiber == Fiber.finished) continue;
if (@cmpxchgWeak(
?*Fiber,
&steal_ready_search_thread.ready_queue,
ready_fiber,
null,
.acquire,
.monotonic,
)) |_| continue;
@atomicStore(?*Fiber, &thread.ready_queue, ready_fiber.queue_next, .release);
ready_fiber.queue_next = null;
return ready_fiber;
}
// couldn't find anything to do, so we are now open for business
@atomicStore(?*Fiber, &thread.ready_queue, null, .monotonic);
return null;
}
fn yield(k: *Kqueue, maybe_ready_fiber: ?*Fiber, pending_task: SwitchMessage.PendingTask) void {
const thread: *Thread = .current();
const ready_context = if (maybe_ready_fiber orelse k.findReadyFiber(thread)) |ready_fiber|
&ready_fiber.context
else
&thread.idle_context;
const message: SwitchMessage = .{
.contexts = .{
.prev = thread.current_context,
.ready = ready_context,
},
.pending_task = pending_task,
};
std.log.debug("switching from {*} to {*}", .{ message.contexts.prev, message.contexts.ready });
contextSwitch(&message).handle(k);
}
fn schedule(k: *Kqueue, thread: *Thread, ready_queue: Fiber.Queue) void {
{
var fiber = ready_queue.head;
while (true) {
std.log.debug("scheduling {*}", .{fiber});
fiber = fiber.queue_next orelse break;
}
assert(fiber == ready_queue.tail);
}
// shared fields of previous `Thread` must be initialized before later ones are marked as active
const new_thread_index = @atomicLoad(u32, &k.threads.active, .acquire);
for (0..@min(max_idle_search, new_thread_index)) |_| {
defer thread.idle_search_index += 1;
if (thread.idle_search_index == new_thread_index) thread.idle_search_index = 0;
const idle_search_thread = &k.threads.allocated[0..new_thread_index][thread.idle_search_index];
if (idle_search_thread == thread) continue;
if (@cmpxchgWeak(
?*Fiber,
&idle_search_thread.ready_queue,
null,
ready_queue.head,
.release,
.monotonic,
)) |_| continue;
const changes = [_]posix.Kevent{
.{
.ident = 0,
.filter = std.c.EVFILT.USER,
.flags = std.c.EV.ADD | std.c.EV.ONESHOT,
.fflags = std.c.NOTE.TRIGGER,
.data = 0,
.udata = @intFromEnum(Completion.UserData.wakeup),
},
};
// If an error occurs it only pessimises scheduling.
_ = posix.kevent(idle_search_thread.kq_fd, &changes, &.{}, null) catch {};
return;
}
spawn_thread: {
// previous failed reservations must have completed before retrying
if (new_thread_index == k.threads.allocated.len or @cmpxchgWeak(
u32,
&k.threads.reserved,
new_thread_index,
new_thread_index + 1,
.acquire,
.monotonic,
) != null) break :spawn_thread;
const new_thread = &k.threads.allocated[new_thread_index];
const next_thread_index = new_thread_index + 1;
new_thread.* = .{
.thread = undefined,
.idle_context = undefined,
.current_context = &new_thread.idle_context,
.ready_queue = ready_queue.head,
.kq_fd = posix.kqueue() catch |err| {
@atomicStore(u32, &k.threads.reserved, new_thread_index, .release);
// no more access to `thread` after giving up reservation
std.log.warn("unable to create worker thread due to kqueue init failure: {t}", .{err});
break :spawn_thread;
},
.idle_search_index = 0,
.steal_ready_search_index = 0,
};
new_thread.thread = std.Thread.spawn(.{
.stack_size = idle_stack_size,
.allocator = k.gpa,
}, threadEntry, .{ k, new_thread_index }) catch |err| {
posix.close(new_thread.kq_fd);
@atomicStore(u32, &k.threads.reserved, new_thread_index, .release);
// no more access to `thread` after giving up reservation
std.log.warn("unable to create worker thread due spawn failure: {s}", .{@errorName(err)});
break :spawn_thread;
};
// shared fields of `Thread` must be initialized before being marked active
@atomicStore(u32, &k.threads.active, next_thread_index, .release);
return;
}
// nobody wanted it, so just queue it on ourselves
while (@cmpxchgWeak(
?*Fiber,
&thread.ready_queue,
ready_queue.tail.queue_next,
ready_queue.head,
.acq_rel,
.acquire,
)) |old_head| ready_queue.tail.queue_next = old_head;
}
fn mainIdle(k: *Kqueue, message: *const SwitchMessage) callconv(.withStackAlign(.c, @max(@alignOf(Thread), @alignOf(Context)))) noreturn {
message.handle(k);
k.idle(&k.threads.allocated[0]);
k.yield(@ptrCast(&k.main_fiber_buffer), .nothing);
unreachable; // switched to dead fiber
}
fn threadEntry(k: *Kqueue, index: u32) void {
const thread: *Thread = &k.threads.allocated[index];
Thread.self = thread;
std.log.debug("created thread idle {*}", .{&thread.idle_context});
k.idle(thread);
}
const Completion = struct {
const UserData = enum(usize) {
unused,
wakeup,
cleanup,
exit,
/// *Fiber
_,
};
/// Corresponds to Kevent field.
flags: u16,
/// Corresponds to Kevent field.
fflags: u32,
/// Corresponds to Kevent field.
data: isize,
};
fn idle(k: *Kqueue, thread: *Thread) void {
var events_buffer: [changes_buffer_len]posix.Kevent = undefined;
var maybe_ready_fiber: ?*Fiber = null;
while (true) {
while (maybe_ready_fiber orelse k.findReadyFiber(thread)) |ready_fiber| {
k.yield(ready_fiber, .nothing);
maybe_ready_fiber = null;
}
const n = posix.kevent(thread.kq_fd, &.{}, &events_buffer, null) catch |err| {
// TODO handle EINTR for cancellation purposes
@panic(@errorName(err));
};
var maybe_ready_queue: ?Fiber.Queue = null;
for (events_buffer[0..n]) |event| switch (@as(Completion.UserData, @enumFromInt(event.udata))) {
.unused => unreachable, // bad submission queued?
.wakeup => {},
.cleanup => @panic("failed to notify other threads that we are exiting"),
.exit => {
assert(maybe_ready_fiber == null and maybe_ready_queue == null); // pending async
return;
},
_ => {
const fiber: *Fiber = @ptrFromInt(event.udata);
assert(fiber.queue_next == null);
fiber.resultPointer(Completion).* = .{
.flags = event.flags,
.fflags = event.fflags,
.data = event.data,
};
if (maybe_ready_fiber == null) maybe_ready_fiber = fiber else if (maybe_ready_queue) |*ready_queue| {
ready_queue.tail.queue_next = fiber;
ready_queue.tail = fiber;
} else maybe_ready_queue = .{ .head = fiber, .tail = fiber };
},
};
if (maybe_ready_queue) |ready_queue| k.schedule(thread, ready_queue);
}
}
const SwitchMessage = struct {
contexts: extern struct {
prev: *Context,
ready: *Context,
},
pending_task: PendingTask,
const PendingTask = union(enum) {
nothing,
reschedule,
recycle: *Fiber,
register_awaiter: *?*Fiber,
register_select: []const *Io.AnyFuture,
mutex_lock: struct {
prev_state: Io.Mutex.State,
mutex: *Io.Mutex,
},
condition_wait: struct {
cond: *Io.Condition,
mutex: *Io.Mutex,
},
exit,
};
fn handle(message: *const SwitchMessage, k: *Kqueue) void {
const thread: *Thread = .current();
thread.current_context = message.contexts.ready;
switch (message.pending_task) {
.nothing => {},
.reschedule => if (message.contexts.prev != &thread.idle_context) {
const prev_fiber: *Fiber = @alignCast(@fieldParentPtr("context", message.contexts.prev));
assert(prev_fiber.queue_next == null);
k.schedule(thread, .{ .head = prev_fiber, .tail = prev_fiber });
},
.recycle => |fiber| {
k.recycle(fiber);
},
.register_awaiter => |awaiter| {
const prev_fiber: *Fiber = @alignCast(@fieldParentPtr("context", message.contexts.prev));
assert(prev_fiber.queue_next == null);
if (@atomicRmw(?*Fiber, awaiter, .Xchg, prev_fiber, .acq_rel) == Fiber.finished)
k.schedule(thread, .{ .head = prev_fiber, .tail = prev_fiber });
},
.register_select => |futures| {
const prev_fiber: *Fiber = @alignCast(@fieldParentPtr("context", message.contexts.prev));
assert(prev_fiber.queue_next == null);
for (futures) |any_future| {
const future_fiber: *Fiber = @ptrCast(@alignCast(any_future));
if (@atomicRmw(?*Fiber, &future_fiber.awaiter, .Xchg, prev_fiber, .acq_rel) == Fiber.finished) {
const closure: *AsyncClosure = .fromFiber(future_fiber);
if (!@atomicRmw(bool, &closure.already_awaited, .Xchg, true, .seq_cst)) {
k.schedule(thread, .{ .head = prev_fiber, .tail = prev_fiber });
}
}
}
},
.mutex_lock => |mutex_lock| {
const prev_fiber: *Fiber = @alignCast(@fieldParentPtr("context", message.contexts.prev));
assert(prev_fiber.queue_next == null);
var prev_state = mutex_lock.prev_state;
while (switch (prev_state) {
else => next_state: {
prev_fiber.queue_next = @ptrFromInt(@intFromEnum(prev_state));
break :next_state @cmpxchgWeak(
Io.Mutex.State,
&mutex_lock.mutex.state,
prev_state,
@enumFromInt(@intFromPtr(prev_fiber)),
.release,
.acquire,
);
},
.unlocked => @cmpxchgWeak(
Io.Mutex.State,
&mutex_lock.mutex.state,
.unlocked,
.locked_once,
.acquire,
.acquire,
) orelse {
prev_fiber.queue_next = null;
k.schedule(thread, .{ .head = prev_fiber, .tail = prev_fiber });
return;
},
}) |next_state| prev_state = next_state;
},
.condition_wait => |condition_wait| {
const prev_fiber: *Fiber = @alignCast(@fieldParentPtr("context", message.contexts.prev));
assert(prev_fiber.queue_next == null);
const cond_impl = prev_fiber.resultPointer(Condition);
cond_impl.* = .{
.tail = prev_fiber,
.event = .queued,
};
if (@cmpxchgStrong(
?*Fiber,
@as(*?*Fiber, @ptrCast(&condition_wait.cond.state)),
null,
prev_fiber,
.release,
.acquire,
)) |waiting_fiber| {
const waiting_cond_impl = waiting_fiber.?.resultPointer(Condition);
assert(waiting_cond_impl.tail.queue_next == null);
waiting_cond_impl.tail.queue_next = prev_fiber;
waiting_cond_impl.tail = prev_fiber;
}
condition_wait.mutex.unlock(k.io());
},
.exit => for (k.threads.allocated[0..@atomicLoad(u32, &k.threads.active, .acquire)]) |*each_thread| {
const changes = [_]posix.Kevent{
.{
.ident = 0,
.filter = std.c.EVFILT.USER,
.flags = std.c.EV.ADD | std.c.EV.ONESHOT,
.fflags = std.c.NOTE.TRIGGER,
.data = 0,
.udata = @intFromEnum(Completion.UserData.exit),
},
};
_ = posix.kevent(each_thread.kq_fd, &changes, &.{}, null) catch |err| {
@panic(@errorName(err));
};
},
}
}
};
const Context = switch (builtin.cpu.arch) {
.aarch64 => extern struct {
sp: u64,
fp: u64,
pc: u64,
x18: u64,
},
.x86_64 => extern struct {
rsp: u64,
rbp: u64,
rip: u64,
},
else => |arch| @compileError("unimplemented architecture: " ++ @tagName(arch)),
};
inline fn contextSwitch(message: *const SwitchMessage) *const SwitchMessage {
return @fieldParentPtr("contexts", switch (builtin.cpu.arch) {
.aarch64 => asm volatile (
\\ ldp x0, x2, [x1]
\\ ldp x3, x18, [x2, #16]
\\ mov x4, sp
\\ stp x4, fp, [x0]
\\ adr x5, 0f
\\ ldp x4, fp, [x2]
\\ stp x5, x18, [x0, #16]
\\ mov sp, x4
\\ br x3
\\0:
: [received_message] "={x1}" (-> *const @FieldType(SwitchMessage, "contexts")),
: [message_to_send] "{x1}" (&message.contexts),
: .{
.x0 = true,
.x1 = true,
.x2 = true,
.x3 = true,
.x4 = true,
.x5 = true,
.x6 = true,
.x7 = true,
.x8 = true,
.x9 = true,
.x10 = true,
.x11 = true,
.x12 = true,
.x13 = true,
.x14 = true,
.x15 = true,
.x16 = true,
.x17 = true,
.x19 = true,
.x20 = true,
.x21 = true,
.x22 = true,
.x23 = true,
.x24 = true,
.x25 = true,
.x26 = true,
.x27 = true,
.x28 = true,
.x30 = true,
.z0 = true,
.z1 = true,
.z2 = true,
.z3 = true,
.z4 = true,
.z5 = true,
.z6 = true,
.z7 = true,
.z8 = true,
.z9 = true,
.z10 = true,
.z11 = true,
.z12 = true,
.z13 = true,
.z14 = true,
.z15 = true,
.z16 = true,
.z17 = true,
.z18 = true,
.z19 = true,
.z20 = true,
.z21 = true,
.z22 = true,
.z23 = true,
.z24 = true,
.z25 = true,
.z26 = true,
.z27 = true,
.z28 = true,
.z29 = true,
.z30 = true,
.z31 = true,
.p0 = true,
.p1 = true,
.p2 = true,
.p3 = true,
.p4 = true,
.p5 = true,
.p6 = true,
.p7 = true,
.p8 = true,
.p9 = true,
.p10 = true,
.p11 = true,
.p12 = true,
.p13 = true,
.p14 = true,
.p15 = true,
.fpcr = true,
.fpsr = true,
.ffr = true,
.memory = true,
}),
.x86_64 => asm volatile (
\\ movq 0(%%rsi), %%rax
\\ movq 8(%%rsi), %%rcx
\\ leaq 0f(%%rip), %%rdx
\\ movq %%rsp, 0(%%rax)
\\ movq %%rbp, 8(%%rax)
\\ movq %%rdx, 16(%%rax)
\\ movq 0(%%rcx), %%rsp
\\ movq 8(%%rcx), %%rbp
\\ jmpq *16(%%rcx)
\\0:
: [received_message] "={rsi}" (-> *const @FieldType(SwitchMessage, "contexts")),
: [message_to_send] "{rsi}" (&message.contexts),
: .{
.rax = true,
.rcx = true,
.rdx = true,
.rbx = true,
.rsi = true,
.rdi = true,
.r8 = true,
.r9 = true,
.r10 = true,
.r11 = true,
.r12 = true,
.r13 = true,
.r14 = true,
.r15 = true,
.mm0 = true,
.mm1 = true,
.mm2 = true,
.mm3 = true,
.mm4 = true,
.mm5 = true,
.mm6 = true,
.mm7 = true,
.zmm0 = true,
.zmm1 = true,
.zmm2 = true,
.zmm3 = true,
.zmm4 = true,
.zmm5 = true,
.zmm6 = true,
.zmm7 = true,
.zmm8 = true,
.zmm9 = true,
.zmm10 = true,
.zmm11 = true,
.zmm12 = true,
.zmm13 = true,
.zmm14 = true,
.zmm15 = true,
.zmm16 = true,
.zmm17 = true,
.zmm18 = true,
.zmm19 = true,
.zmm20 = true,
.zmm21 = true,
.zmm22 = true,
.zmm23 = true,
.zmm24 = true,
.zmm25 = true,
.zmm26 = true,
.zmm27 = true,
.zmm28 = true,
.zmm29 = true,
.zmm30 = true,
.zmm31 = true,
.fpsr = true,
.fpcr = true,
.mxcsr = true,
.rflags = true,
.dirflag = true,
.memory = true,
}),
else => |arch| @compileError("unimplemented architecture: " ++ @tagName(arch)),
});
}
fn mainIdleEntry() callconv(.naked) void {
switch (builtin.cpu.arch) {
.x86_64 => asm volatile (
\\ movq (%%rsp), %%rdi
\\ jmp %[mainIdle:P]
:
: [mainIdle] "X" (&mainIdle),
),
.aarch64 => asm volatile (
\\ ldr x0, [sp, #-8]
\\ b %[mainIdle]
:
: [mainIdle] "X" (&mainIdle),
),
else => |arch| @compileError("unimplemented architecture: " ++ @tagName(arch)),
}
}
fn fiberEntry() callconv(.naked) void {
switch (builtin.cpu.arch) {
.x86_64 => asm volatile (
\\ leaq 8(%%rsp), %%rdi
\\ jmp %[AsyncClosure_call:P]
:
: [AsyncClosure_call] "X" (&AsyncClosure.call),
),
else => |arch| @compileError("unimplemented architecture: " ++ @tagName(arch)),
}
}
const AsyncClosure = struct {
event_loop: *Kqueue,
fiber: *Fiber,
start: *const fn (context: *const anyopaque, result: *anyopaque) void,
result_align: Alignment,
already_awaited: bool,
fn contextPointer(closure: *AsyncClosure) [*]align(Fiber.max_context_align.toByteUnits()) u8 {
return @alignCast(@as([*]u8, @ptrCast(closure)) + @sizeOf(AsyncClosure));
}
fn call(closure: *AsyncClosure, message: *const SwitchMessage) callconv(.withStackAlign(.c, @alignOf(AsyncClosure))) noreturn {
message.handle(closure.event_loop);
const fiber = closure.fiber;
std.log.debug("{*} performing async", .{fiber});
closure.start(closure.contextPointer(), fiber.resultBytes(closure.result_align));
const awaiter = @atomicRmw(?*Fiber, &fiber.awaiter, .Xchg, Fiber.finished, .acq_rel);
const ready_awaiter = r: {
const a = awaiter orelse break :r null;
if (@atomicRmw(bool, &closure.already_awaited, .Xchg, true, .acq_rel)) break :r null;
break :r a;
};
closure.event_loop.yield(ready_awaiter, .nothing);
unreachable; // switched to dead fiber
}
fn fromFiber(fiber: *Fiber) *AsyncClosure {
return @ptrFromInt(Fiber.max_context_align.max(.of(AsyncClosure)).backward(
@intFromPtr(fiber.allocatedEnd()) - Fiber.max_context_size,
) - @sizeOf(AsyncClosure));
}
};
pub fn io(k: *Kqueue) Io {
return .{
.userdata = k,
@ -229,11 +1001,33 @@ fn mutexUnlock(userdata: ?*anyopaque, prev_state: Io.Mutex.State, mutex: *Io.Mut
fn conditionWait(userdata: ?*anyopaque, cond: *Io.Condition, mutex: *Io.Mutex) Io.Cancelable!void {
const k: *Kqueue = @ptrCast(@alignCast(userdata));
_ = k;
_ = cond;
_ = mutex;
@panic("TODO");
k.yield(null, .{ .condition_wait = .{ .cond = cond, .mutex = mutex } });
const thread = Thread.current();
const fiber = thread.currentFiber();
const cond_impl = fiber.resultPointer(Condition);
try mutex.lock(k.io());
switch (cond_impl.event) {
.queued => {},
.wake => |wake| if (fiber.queue_next) |next_fiber| switch (wake) {
.one => if (@cmpxchgStrong(
?*Fiber,
@as(*?*Fiber, @ptrCast(&cond.state)),
null,
next_fiber,
.release,
.acquire,
)) |old_fiber| {
const old_cond_impl = old_fiber.?.resultPointer(Condition);
assert(old_cond_impl.tail.queue_next == null);
old_cond_impl.tail.queue_next = next_fiber;
old_cond_impl.tail = cond_impl.tail;
},
.all => k.schedule(thread, .{ .head = next_fiber, .tail = cond_impl.tail }),
},
}
fiber.queue_next = null;
}
fn conditionWaitUncancelable(userdata: ?*anyopaque, cond: *Io.Condition, mutex: *Io.Mutex) void {
const k: *Kqueue = @ptrCast(@alignCast(userdata));
_ = k;
@ -243,10 +1037,9 @@ fn conditionWaitUncancelable(userdata: ?*anyopaque, cond: *Io.Condition, mutex:
}
fn conditionWake(userdata: ?*anyopaque, cond: *Io.Condition, wake: Io.Condition.Wake) void {
const k: *Kqueue = @ptrCast(@alignCast(userdata));
_ = k;
_ = cond;
_ = wake;
@panic("TODO");
const waiting_fiber = @atomicRmw(?*Fiber, @as(*?*Fiber, @ptrCast(&cond.state)), .Xchg, null, .acquire) orelse return;
waiting_fiber.resultPointer(Condition).event = .{ .wake = wake };
k.yield(waiting_fiber, .reschedule);
}
fn dirMake(userdata: ?*anyopaque, dir: Dir, sub_path: []const u8, mode: Dir.Mode) Dir.MakeError!void {
@ -426,7 +1219,7 @@ fn netBindIp(
const k: *Kqueue = @ptrCast(@alignCast(userdata));
const family = Io.Threaded.posixAddressFamily(address);
const socket_fd = try openSocketPosix(k, family, options);
errdefer posix.close(socket_fd);
errdefer std.posix.close(socket_fd);
var storage: Io.Threaded.PosixAddress = undefined;
var addr_len = Io.Threaded.addressToPosix(address, &storage);
try posixBind(k, socket_fd, &storage.any, addr_len);
@ -704,3 +1497,11 @@ fn setSocketOption(k: *Kqueue, fd: posix.fd_t, level: i32, opt_name: u32, option
fn checkCancel(k: *Kqueue) error{Canceled}!void {
if (cancelRequested(k)) return error.Canceled;
}
const Condition = struct {
tail: *Fiber,
event: union(enum) {
queued,
wake: Io.Condition.Wake,
},
};