mirror of
https://github.com/ziglang/zig.git
synced 2026-01-04 20:43:19 +00:00
Sema: rewrite monomorphed_funcs usage
In an effort to delete `Value.hashUncoerced`, generic instantiation has been redesigned. Instead of just storing instantiations in `monomorphed_funcs`, partially instantiated generic argument types are also cached. This isn't quite the single `getOrPut` that it used to be, but one `get` per generic argument plus one get for the instantiation, with an equal number of `put`s per unique instantiation isn't bad.
This commit is contained in:
parent
04e66e6b4d
commit
da24ea7f36
@ -99,6 +99,7 @@ tmp_hack_arena: std.heap.ArenaAllocator,
|
||||
/// This is currently only used for string literals.
|
||||
memoized_decls: std.AutoHashMapUnmanaged(InternPool.Index, Decl.Index) = .{},
|
||||
|
||||
monomorphed_func_keys: std.ArrayListUnmanaged(InternPool.Index) = .{},
|
||||
/// The set of all the generic function instantiations. This is used so that when a generic
|
||||
/// function is called twice with the same comptime parameter arguments, both calls dispatch
|
||||
/// to the same function.
|
||||
@ -202,24 +203,40 @@ pub const CImportError = struct {
|
||||
}
|
||||
};
|
||||
|
||||
const MonomorphedFuncsSet = std.HashMapUnmanaged(
|
||||
Fn.Index,
|
||||
void,
|
||||
pub const MonomorphedFuncKey = struct { func: Fn.Index, args_index: u32, args_len: u32 };
|
||||
|
||||
pub const MonomorphedFuncAdaptedKey = struct { func: Fn.Index, args: []const InternPool.Index };
|
||||
|
||||
pub const MonomorphedFuncsSet = std.HashMapUnmanaged(
|
||||
MonomorphedFuncKey,
|
||||
InternPool.Index,
|
||||
MonomorphedFuncsContext,
|
||||
std.hash_map.default_max_load_percentage,
|
||||
);
|
||||
|
||||
const MonomorphedFuncsContext = struct {
|
||||
pub const MonomorphedFuncsContext = struct {
|
||||
mod: *Module,
|
||||
|
||||
pub fn eql(ctx: @This(), a: Fn.Index, b: Fn.Index) bool {
|
||||
_ = ctx;
|
||||
return a == b;
|
||||
pub fn eql(_: @This(), a: MonomorphedFuncKey, b: MonomorphedFuncKey) bool {
|
||||
return std.meta.eql(a, b);
|
||||
}
|
||||
|
||||
/// Must match `Sema.GenericCallAdapter.hash`.
|
||||
pub fn hash(ctx: @This(), key: Fn.Index) u64 {
|
||||
return ctx.mod.funcPtr(key).hash;
|
||||
pub fn hash(ctx: @This(), key: MonomorphedFuncKey) u64 {
|
||||
const key_args = ctx.mod.monomorphed_func_keys.items[key.args_index..][0..key.args_len];
|
||||
return std.hash.Wyhash.hash(@enumToInt(key.func), std.mem.sliceAsBytes(key_args));
|
||||
}
|
||||
};
|
||||
|
||||
pub const MonomorphedFuncsAdaptedContext = struct {
|
||||
mod: *Module,
|
||||
|
||||
pub fn eql(ctx: @This(), adapted_key: MonomorphedFuncAdaptedKey, other_key: MonomorphedFuncKey) bool {
|
||||
const other_key_args = ctx.mod.monomorphed_func_keys.items[other_key.args_index..][0..other_key.args_len];
|
||||
return adapted_key.func == other_key.func and std.mem.eql(InternPool.Index, adapted_key.args, other_key_args);
|
||||
}
|
||||
|
||||
pub fn hash(_: @This(), adapted_key: MonomorphedFuncAdaptedKey) u64 {
|
||||
return std.hash.Wyhash.hash(@enumToInt(adapted_key.func), std.mem.sliceAsBytes(adapted_key.args));
|
||||
}
|
||||
};
|
||||
|
||||
@ -571,9 +588,6 @@ pub const Decl = struct {
|
||||
pub fn clearValues(decl: *Decl, mod: *Module) void {
|
||||
if (decl.getOwnedFunctionIndex(mod).unwrap()) |func| {
|
||||
_ = mod.align_stack_fns.remove(func);
|
||||
if (mod.funcPtr(func).comptime_args != null) {
|
||||
_ = mod.monomorphed_funcs.removeContext(func, .{ .mod = mod });
|
||||
}
|
||||
mod.destroyFunc(func);
|
||||
}
|
||||
}
|
||||
|
||||
239
src/Sema.zig
239
src/Sema.zig
@ -6679,78 +6679,6 @@ fn callBuiltin(
|
||||
_ = try sema.analyzeCall(block, builtin_fn, func_ty, sema.src, sema.src, modifier, false, args, null, null);
|
||||
}
|
||||
|
||||
const GenericCallAdapter = struct {
|
||||
generic_fn: *Module.Fn,
|
||||
precomputed_hash: u64,
|
||||
func_ty_info: InternPool.Key.FuncType,
|
||||
args: []const Arg,
|
||||
module: *Module,
|
||||
|
||||
const Arg = struct {
|
||||
ty: Type,
|
||||
val: Value,
|
||||
is_anytype: bool,
|
||||
};
|
||||
|
||||
pub fn eql(ctx: @This(), adapted_key: void, other_key: Module.Fn.Index) bool {
|
||||
_ = adapted_key;
|
||||
const other_func = ctx.module.funcPtr(other_key);
|
||||
|
||||
// Checking for equality may happen on an item that has been inserted
|
||||
// into the map but is not yet fully initialized. In such case, the
|
||||
// two initialized fields are `hash` and `generic_owner_decl`.
|
||||
if (ctx.generic_fn.owner_decl != other_func.generic_owner_decl.unwrap().?) return false;
|
||||
|
||||
const other_comptime_args = other_func.comptime_args.?;
|
||||
for (other_comptime_args[0..ctx.func_ty_info.param_types.len], 0..) |other_arg, i| {
|
||||
const this_arg = ctx.args[i];
|
||||
const this_is_comptime = !this_arg.val.isGenericPoison();
|
||||
const other_is_comptime = !other_arg.val.isGenericPoison();
|
||||
const this_is_anytype = this_arg.is_anytype;
|
||||
const other_is_anytype = other_func.isAnytypeParam(ctx.module, @intCast(u32, i));
|
||||
|
||||
if (other_is_anytype != this_is_anytype) return false;
|
||||
if (other_is_comptime != this_is_comptime) return false;
|
||||
|
||||
if (this_is_anytype) {
|
||||
// Both are anytype parameters.
|
||||
if (!this_arg.ty.eql(other_arg.ty, ctx.module)) {
|
||||
return false;
|
||||
}
|
||||
if (this_is_comptime) {
|
||||
// Both are comptime and anytype parameters with matching types.
|
||||
if (!this_arg.val.eql(other_arg.val, other_arg.ty, ctx.module)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else if (this_is_comptime) {
|
||||
// Both are comptime parameters but not anytype parameters.
|
||||
// We assert no error is possible here because any lazy values must be resolved
|
||||
// before inserting into the generic function hash map.
|
||||
const is_eql = Value.eqlAdvanced(
|
||||
this_arg.val,
|
||||
this_arg.ty,
|
||||
other_arg.val,
|
||||
other_arg.ty,
|
||||
ctx.module,
|
||||
null,
|
||||
) catch unreachable;
|
||||
if (!is_eql) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// The implementation of the hash is in semantic analysis of function calls, so
|
||||
/// that any errors when computing the hash can be properly reported.
|
||||
pub fn hash(ctx: @This(), adapted_key: void) u64 {
|
||||
_ = adapted_key;
|
||||
return ctx.precomputed_hash;
|
||||
}
|
||||
};
|
||||
|
||||
fn analyzeCall(
|
||||
sema: *Sema,
|
||||
block: *Block,
|
||||
@ -7480,11 +7408,12 @@ fn instantiateGenericCall(
|
||||
const ip = &mod.intern_pool;
|
||||
|
||||
const func_val = try sema.resolveConstValue(block, func_src, func, "generic function being called must be comptime-known");
|
||||
const module_fn = mod.funcPtr(switch (ip.indexToKey(func_val.toIntern())) {
|
||||
const module_fn_index = switch (ip.indexToKey(func_val.toIntern())) {
|
||||
.func => |function| function.index,
|
||||
.ptr => |ptr| mod.declPtr(ptr.addr.decl).val.getFunctionIndex(mod).unwrap().?,
|
||||
else => unreachable,
|
||||
});
|
||||
};
|
||||
const module_fn = mod.funcPtr(module_fn_index);
|
||||
// Check the Module's generic function map with an adapted context, so that we
|
||||
// can match against `uncasted_args` rather than doing the work below to create a
|
||||
// generic Scope only to junk it if it matches an existing instantiation.
|
||||
@ -7495,32 +7424,24 @@ fn instantiateGenericCall(
|
||||
const fn_info = fn_zir.getFnInfo(module_fn.zir_body_inst);
|
||||
const zir_tags = fn_zir.instructions.items(.tag);
|
||||
|
||||
// This hash must match `Module.MonomorphedFuncsContext.hash`.
|
||||
// For parameters explicitly marked comptime and simple parameter type expressions,
|
||||
// we know whether a parameter is elided from a monomorphed function, and can
|
||||
// use it in the hash here. However, for parameter type expressions that are not
|
||||
// explicitly marked comptime and rely on previous parameter comptime values, we
|
||||
// don't find out until after generating a monomorphed function whether the parameter
|
||||
// type ended up being a "must-be-comptime-known" type.
|
||||
var hasher = std.hash.Wyhash.init(0);
|
||||
std.hash.autoHash(&hasher, module_fn.owner_decl);
|
||||
|
||||
const generic_args = try sema.arena.alloc(GenericCallAdapter.Arg, func_ty_info.param_types.len);
|
||||
{
|
||||
var i: usize = 0;
|
||||
const generic_args = try sema.arena.alloc(InternPool.Index, func_ty_info.param_types.len);
|
||||
const callee_index = callee: {
|
||||
var arg_i: usize = 0;
|
||||
var generic_arg_i: u32 = 0;
|
||||
var known_unique = false;
|
||||
for (fn_info.param_body) |inst| {
|
||||
var is_comptime = false;
|
||||
var is_anytype = false;
|
||||
switch (zir_tags[inst]) {
|
||||
.param => {
|
||||
is_comptime = func_ty_info.paramIsComptime(@intCast(u5, i));
|
||||
is_comptime = func_ty_info.paramIsComptime(@intCast(u5, arg_i));
|
||||
},
|
||||
.param_comptime => {
|
||||
is_comptime = true;
|
||||
},
|
||||
.param_anytype => {
|
||||
is_anytype = true;
|
||||
is_comptime = func_ty_info.paramIsComptime(@intCast(u5, i));
|
||||
is_comptime = func_ty_info.paramIsComptime(@intCast(u5, arg_i));
|
||||
},
|
||||
.param_anytype_comptime => {
|
||||
is_anytype = true;
|
||||
@ -7529,7 +7450,15 @@ fn instantiateGenericCall(
|
||||
else => continue,
|
||||
}
|
||||
|
||||
const arg_ty = sema.typeOf(uncasted_args[i]);
|
||||
defer arg_i += 1;
|
||||
if (known_unique) {
|
||||
if (is_comptime or is_anytype) {
|
||||
generic_arg_i += 1;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
const arg_ty = sema.typeOf(uncasted_args[arg_i]);
|
||||
if (is_comptime or is_anytype) {
|
||||
// Tuple default values are a part of the type and need to be
|
||||
// resolved to hash the type.
|
||||
@ -7537,69 +7466,72 @@ fn instantiateGenericCall(
|
||||
}
|
||||
|
||||
if (is_comptime) {
|
||||
const arg_val = sema.analyzeGenericCallArgVal(block, .unneeded, uncasted_args[i]) catch |err| switch (err) {
|
||||
const arg_val = sema.analyzeGenericCallArgVal(block, .unneeded, uncasted_args[arg_i]) catch |err| switch (err) {
|
||||
error.NeededSourceLocation => {
|
||||
const decl = sema.mod.declPtr(block.src_decl);
|
||||
const arg_src = mod.argSrc(call_src.node_offset.x, decl, i, bound_arg_src);
|
||||
_ = try sema.analyzeGenericCallArgVal(block, arg_src, uncasted_args[i]);
|
||||
const arg_src = mod.argSrc(call_src.node_offset.x, decl, arg_i, bound_arg_src);
|
||||
_ = try sema.analyzeGenericCallArgVal(block, arg_src, uncasted_args[arg_i]);
|
||||
unreachable;
|
||||
},
|
||||
else => |e| return e,
|
||||
};
|
||||
arg_val.hashUncoerced(arg_ty, &hasher, mod);
|
||||
|
||||
if (is_anytype) {
|
||||
std.hash.autoHash(&hasher, arg_ty.toIntern());
|
||||
generic_args[i] = .{
|
||||
.ty = arg_ty,
|
||||
.val = arg_val,
|
||||
.is_anytype = true,
|
||||
};
|
||||
generic_args[generic_arg_i] = arg_val.toIntern();
|
||||
} else {
|
||||
generic_args[i] = .{
|
||||
.ty = arg_ty,
|
||||
.val = arg_val,
|
||||
.is_anytype = false,
|
||||
const final_arg_ty = mod.monomorphed_funcs.getAdapted(
|
||||
Module.MonomorphedFuncAdaptedKey{
|
||||
.func = module_fn_index,
|
||||
.args = generic_args[0..generic_arg_i],
|
||||
},
|
||||
Module.MonomorphedFuncsAdaptedContext{ .mod = mod },
|
||||
) orelse {
|
||||
known_unique = true;
|
||||
generic_arg_i += 1;
|
||||
continue;
|
||||
};
|
||||
const casted_arg = sema.coerce(block, final_arg_ty.toType(), uncasted_args[arg_i], .unneeded) catch |err| switch (err) {
|
||||
error.NeededSourceLocation => {
|
||||
const decl = sema.mod.declPtr(block.src_decl);
|
||||
const arg_src = mod.argSrc(call_src.node_offset.x, decl, arg_i, bound_arg_src);
|
||||
_ = try sema.coerce(block, final_arg_ty.toType(), uncasted_args[arg_i], arg_src);
|
||||
unreachable;
|
||||
},
|
||||
else => |e| return e,
|
||||
};
|
||||
const casted_arg_val = sema.analyzeGenericCallArgVal(block, .unneeded, casted_arg) catch |err| switch (err) {
|
||||
error.NeededSourceLocation => {
|
||||
const decl = sema.mod.declPtr(block.src_decl);
|
||||
const arg_src = mod.argSrc(call_src.node_offset.x, decl, arg_i, bound_arg_src);
|
||||
_ = try sema.analyzeGenericCallArgVal(block, arg_src, casted_arg);
|
||||
unreachable;
|
||||
},
|
||||
else => |e| return e,
|
||||
};
|
||||
generic_args[generic_arg_i] = casted_arg_val.toIntern();
|
||||
}
|
||||
generic_arg_i += 1;
|
||||
} else if (is_anytype) {
|
||||
std.hash.autoHash(&hasher, arg_ty.toIntern());
|
||||
generic_args[i] = .{
|
||||
.ty = arg_ty,
|
||||
.val = Value.generic_poison,
|
||||
.is_anytype = true,
|
||||
};
|
||||
} else {
|
||||
generic_args[i] = .{
|
||||
.ty = arg_ty,
|
||||
.val = Value.generic_poison,
|
||||
.is_anytype = false,
|
||||
};
|
||||
generic_args[generic_arg_i] = arg_ty.toIntern();
|
||||
generic_arg_i += 1;
|
||||
}
|
||||
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
|
||||
const precomputed_hash = hasher.final();
|
||||
if (!known_unique) {
|
||||
if (mod.monomorphed_funcs.getAdapted(
|
||||
Module.MonomorphedFuncAdaptedKey{
|
||||
.func = module_fn_index,
|
||||
.args = generic_args[0..generic_arg_i],
|
||||
},
|
||||
Module.MonomorphedFuncsAdaptedContext{ .mod = mod },
|
||||
)) |callee_func| break :callee mod.intern_pool.indexToKey(callee_func).func.index;
|
||||
}
|
||||
|
||||
const adapter: GenericCallAdapter = .{
|
||||
.generic_fn = module_fn,
|
||||
.precomputed_hash = precomputed_hash,
|
||||
.func_ty_info = func_ty_info,
|
||||
.args = generic_args,
|
||||
.module = mod,
|
||||
};
|
||||
const gop = try mod.monomorphed_funcs.getOrPutContextAdapted(gpa, {}, adapter, .{ .mod = mod });
|
||||
const callee_index = if (!gop.found_existing) callee: {
|
||||
const new_module_func_index = try mod.createFunc(undefined);
|
||||
const new_module_func = mod.funcPtr(new_module_func_index);
|
||||
|
||||
// This ensures that we can operate on the hash map before the Module.Fn
|
||||
// struct is fully initialized.
|
||||
new_module_func.hash = precomputed_hash;
|
||||
new_module_func.generic_owner_decl = module_fn.owner_decl.toOptional();
|
||||
new_module_func.comptime_args = null;
|
||||
gop.key_ptr.* = new_module_func_index;
|
||||
|
||||
try namespace.anon_decls.ensureUnusedCapacity(gpa, 1);
|
||||
|
||||
@ -7641,7 +7573,8 @@ fn instantiateGenericCall(
|
||||
new_decl,
|
||||
new_decl_index,
|
||||
uncasted_args,
|
||||
module_fn,
|
||||
generic_arg_i,
|
||||
module_fn_index,
|
||||
new_module_func_index,
|
||||
namespace_index,
|
||||
func_ty_info,
|
||||
@ -7657,12 +7590,10 @@ fn instantiateGenericCall(
|
||||
}
|
||||
assert(namespace.anon_decls.orderedRemove(new_decl_index));
|
||||
mod.destroyDecl(new_decl_index);
|
||||
assert(mod.monomorphed_funcs.removeContext(new_module_func_index, .{ .mod = mod }));
|
||||
mod.destroyFunc(new_module_func_index);
|
||||
return err;
|
||||
},
|
||||
else => {
|
||||
assert(mod.monomorphed_funcs.removeContext(new_module_func_index, .{ .mod = mod }));
|
||||
// TODO look up the compile error that happened here and attach a note to it
|
||||
// pointing here, at the generic instantiation callsite.
|
||||
if (sema.owner_func) |owner_func| {
|
||||
@ -7675,9 +7606,8 @@ fn instantiateGenericCall(
|
||||
};
|
||||
|
||||
break :callee new_func;
|
||||
} else gop.key_ptr.*;
|
||||
};
|
||||
const callee = mod.funcPtr(callee_index);
|
||||
|
||||
callee.branch_quota = @max(callee.branch_quota, sema.branch_quota);
|
||||
|
||||
const callee_inst = try sema.analyzeDeclVal(block, func_src, callee.owner_decl);
|
||||
@ -7752,7 +7682,7 @@ fn instantiateGenericCall(
|
||||
if (call_tag == .call_always_tail) {
|
||||
return sema.handleTailCall(block, call_src, func_ty, result);
|
||||
}
|
||||
if (new_fn_info.return_type == .noreturn_type) {
|
||||
if (func_ty.fnReturnType(mod).isNoReturn(mod)) {
|
||||
_ = try block.addNoOp(.unreach);
|
||||
return Air.Inst.Ref.unreachable_value;
|
||||
}
|
||||
@ -7766,7 +7696,8 @@ fn resolveGenericInstantiationType(
|
||||
new_decl: *Decl,
|
||||
new_decl_index: Decl.Index,
|
||||
uncasted_args: []const Air.Inst.Ref,
|
||||
module_fn: *Module.Fn,
|
||||
generic_args_len: u32,
|
||||
module_fn_index: Module.Fn.Index,
|
||||
new_module_func: Module.Fn.Index,
|
||||
namespace: Namespace.Index,
|
||||
func_ty_info: InternPool.Key.FuncType,
|
||||
@ -7777,6 +7708,7 @@ fn resolveGenericInstantiationType(
|
||||
const gpa = sema.gpa;
|
||||
|
||||
const zir_tags = fn_zir.instructions.items(.tag);
|
||||
const module_fn = mod.funcPtr(module_fn_index);
|
||||
const fn_info = fn_zir.getFnInfo(module_fn.zir_body_inst);
|
||||
|
||||
// Re-run the block that creates the function, with the comptime parameters
|
||||
@ -7893,9 +7825,15 @@ fn resolveGenericInstantiationType(
|
||||
const new_func = new_func_val.getFunctionIndex(mod).unwrap().?;
|
||||
assert(new_func == new_module_func);
|
||||
|
||||
const generic_args_index = @intCast(u32, mod.monomorphed_func_keys.items.len);
|
||||
const generic_args = try mod.monomorphed_func_keys.addManyAsSlice(gpa, generic_args_len);
|
||||
var generic_arg_i: u32 = 0;
|
||||
try mod.monomorphed_funcs.ensureUnusedCapacityContext(gpa, generic_args_len + 1, .{ .mod = mod });
|
||||
|
||||
arg_i = 0;
|
||||
for (fn_info.param_body) |inst| {
|
||||
var is_comptime = false;
|
||||
var is_anytype = false;
|
||||
switch (zir_tags[inst]) {
|
||||
.param => {
|
||||
is_comptime = func_ty_info.paramIsComptime(@intCast(u5, arg_i));
|
||||
@ -7904,9 +7842,11 @@ fn resolveGenericInstantiationType(
|
||||
is_comptime = true;
|
||||
},
|
||||
.param_anytype => {
|
||||
is_anytype = true;
|
||||
is_comptime = func_ty_info.paramIsComptime(@intCast(u5, arg_i));
|
||||
},
|
||||
.param_anytype_comptime => {
|
||||
is_anytype = true;
|
||||
is_comptime = true;
|
||||
},
|
||||
else => continue,
|
||||
@ -7924,11 +7864,24 @@ fn resolveGenericInstantiationType(
|
||||
|
||||
if (is_comptime) {
|
||||
const arg_val = (child_sema.resolveMaybeUndefValAllowVariables(arg) catch unreachable).?;
|
||||
if (!is_anytype) {
|
||||
if (mod.monomorphed_funcs.fetchPutAssumeCapacityContext(.{
|
||||
.func = module_fn_index,
|
||||
.args_index = generic_args_index,
|
||||
.args_len = generic_arg_i,
|
||||
}, arg_ty.toIntern(), .{ .mod = mod })) |kv| assert(kv.value == arg_ty.toIntern());
|
||||
}
|
||||
generic_args[generic_arg_i] = arg_val.toIntern();
|
||||
generic_arg_i += 1;
|
||||
child_sema.comptime_args[arg_i] = .{
|
||||
.ty = arg_ty,
|
||||
.val = (try arg_val.intern(arg_ty, mod)).toValue(),
|
||||
};
|
||||
} else {
|
||||
if (is_anytype) {
|
||||
generic_args[generic_arg_i] = arg_ty.toIntern();
|
||||
generic_arg_i += 1;
|
||||
}
|
||||
child_sema.comptime_args[arg_i] = .{
|
||||
.ty = arg_ty,
|
||||
.val = Value.generic_poison,
|
||||
@ -7963,6 +7916,12 @@ fn resolveGenericInstantiationType(
|
||||
new_decl.owns_tv = true;
|
||||
new_decl.analysis = .complete;
|
||||
|
||||
mod.monomorphed_funcs.putAssumeCapacityNoClobberContext(.{
|
||||
.func = module_fn_index,
|
||||
.args_index = generic_args_index,
|
||||
.args_len = generic_arg_i,
|
||||
}, new_decl.val.toIntern(), .{ .mod = mod });
|
||||
|
||||
// Queue up a `codegen_func` work item for the new Fn. The `comptime_args` field
|
||||
// will be populated, ensuring it will have `analyzeBody` called with the ZIR
|
||||
// parameters mapped appropriately.
|
||||
|
||||
@ -1691,77 +1691,6 @@ pub const Value = struct {
|
||||
return (try orderAdvanced(a, b, mod, opt_sema)).compare(.eq);
|
||||
}
|
||||
|
||||
/// This is a more conservative hash function that produces equal hashes for values
|
||||
/// that can coerce into each other.
|
||||
/// This function is used by hash maps and so treats floating-point NaNs as equal
|
||||
/// to each other, and not equal to other floating-point values.
|
||||
pub fn hashUncoerced(val: Value, ty: Type, hasher: *std.hash.Wyhash, mod: *Module) void {
|
||||
if (val.isUndef(mod)) return;
|
||||
// The value is runtime-known and shouldn't affect the hash.
|
||||
if (val.isRuntimeValue(mod)) return;
|
||||
|
||||
if (val.ip_index != .none) {
|
||||
// The InternPool data structure hashes based on Key to make interned objects
|
||||
// unique. An Index can be treated simply as u32 value for the
|
||||
// purpose of Type/Value hashing and equality.
|
||||
std.hash.autoHash(hasher, val.toIntern());
|
||||
return;
|
||||
}
|
||||
|
||||
switch (ty.zigTypeTag(mod)) {
|
||||
.Opaque => unreachable, // Cannot hash opaque types
|
||||
.Void,
|
||||
.NoReturn,
|
||||
.Undefined,
|
||||
.Null,
|
||||
.Struct, // It sure would be nice to do something clever with structs.
|
||||
=> |zig_type_tag| std.hash.autoHash(hasher, zig_type_tag),
|
||||
.Pointer => {
|
||||
assert(ty.isSlice(mod));
|
||||
const slice = val.castTag(.slice).?.data;
|
||||
const ptr_ty = ty.slicePtrFieldType(mod);
|
||||
slice.ptr.hashUncoerced(ptr_ty, hasher, mod);
|
||||
},
|
||||
.Type,
|
||||
.Float,
|
||||
.ComptimeFloat,
|
||||
.Bool,
|
||||
.Int,
|
||||
.ComptimeInt,
|
||||
.Fn,
|
||||
.Optional,
|
||||
.ErrorSet,
|
||||
.ErrorUnion,
|
||||
.Enum,
|
||||
.EnumLiteral,
|
||||
=> unreachable, // handled above with the ip_index check
|
||||
.Array, .Vector => {
|
||||
const len = ty.arrayLen(mod);
|
||||
const elem_ty = ty.childType(mod);
|
||||
var index: usize = 0;
|
||||
while (index < len) : (index += 1) {
|
||||
const elem_val = val.elemValue(mod, index) catch |err| switch (err) {
|
||||
// Will be solved when arrays and vectors get migrated to the intern pool.
|
||||
error.OutOfMemory => @panic("OOM"),
|
||||
};
|
||||
elem_val.hashUncoerced(elem_ty, hasher, mod);
|
||||
}
|
||||
},
|
||||
.Union => {
|
||||
hasher.update(val.tagName(mod));
|
||||
switch (mod.intern_pool.indexToKey(val.toIntern())) {
|
||||
.un => |un| {
|
||||
const active_field_ty = ty.unionFieldType(un.tag.toValue(), mod);
|
||||
un.val.toValue().hashUncoerced(active_field_ty, hasher, mod);
|
||||
},
|
||||
else => std.hash.autoHash(hasher, std.builtin.TypeId.Void),
|
||||
}
|
||||
},
|
||||
.Frame => @panic("TODO implement hashing frame values"),
|
||||
.AnyFrame => @panic("TODO implement hashing anyframe values"),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn isComptimeMutablePtr(val: Value, mod: *Module) bool {
|
||||
return switch (mod.intern_pool.indexToKey(val.toIntern())) {
|
||||
.ptr => |ptr| switch (ptr.addr) {
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user