mirror of
https://github.com/ziglang/zig.git
synced 2025-12-24 23:23:07 +00:00
compiler_rt: Implement __divxf3 for f80
This commit is contained in:
parent
6c0114e044
commit
d930e015c7
@ -253,6 +253,8 @@ comptime {
|
||||
@export(__divsf3, .{ .name = "__divsf3", .linkage = linkage });
|
||||
const __divdf3 = @import("compiler_rt/divdf3.zig").__divdf3;
|
||||
@export(__divdf3, .{ .name = "__divdf3", .linkage = linkage });
|
||||
const __divxf3 = @import("compiler_rt/divxf3.zig").__divxf3;
|
||||
@export(__divxf3, .{ .name = "__divxf3", .linkage = linkage });
|
||||
const __divtf3 = @import("compiler_rt/divtf3.zig").__divtf3;
|
||||
@export(__divtf3, .{ .name = "__divtf3", .linkage = linkage });
|
||||
|
||||
@ -725,17 +727,13 @@ comptime {
|
||||
}
|
||||
|
||||
if (!is_test) {
|
||||
@export(fmodl, .{ .name = "fmodl", .linkage = linkage });
|
||||
if (long_double_is_f80) {
|
||||
@export(fmodl, .{ .name = "fmodx", .linkage = linkage });
|
||||
} else {
|
||||
@export(fmodx, .{ .name = "fmodx", .linkage = linkage });
|
||||
}
|
||||
if (long_double_is_f128) {
|
||||
@export(fmodl, .{ .name = "fmodq", .linkage = linkage });
|
||||
} else {
|
||||
@export(fmodq, .{ .name = "fmodq", .linkage = linkage });
|
||||
@export(fmodx, .{ .name = "fmodl", .linkage = linkage });
|
||||
} else if (long_double_is_f128) {
|
||||
@export(fmodq, .{ .name = "fmodl", .linkage = linkage });
|
||||
}
|
||||
@export(fmodx, .{ .name = "fmodx", .linkage = linkage });
|
||||
@export(fmodq, .{ .name = "fmodq", .linkage = linkage });
|
||||
|
||||
@export(floorf, .{ .name = "floorf", .linkage = linkage });
|
||||
@export(floor, .{ .name = "floor", .linkage = linkage });
|
||||
|
||||
202
lib/std/special/compiler_rt/divxf3.zig
Normal file
202
lib/std/special/compiler_rt/divxf3.zig
Normal file
@ -0,0 +1,202 @@
|
||||
const std = @import("std");
|
||||
const builtin = @import("builtin");
|
||||
const normalize = @import("divdf3.zig").normalize;
|
||||
const wideMultiply = @import("divdf3.zig").wideMultiply;
|
||||
|
||||
pub fn __divxf3(a: f80, b: f80) callconv(.C) f80 {
|
||||
@setRuntimeSafety(builtin.is_test);
|
||||
const T = f80;
|
||||
const Z = std.meta.Int(.unsigned, @bitSizeOf(T));
|
||||
|
||||
const significandBits = std.math.floatMantissaBits(T);
|
||||
const fractionalBits = std.math.floatFractionalBits(T);
|
||||
const exponentBits = std.math.floatExponentBits(T);
|
||||
|
||||
const signBit = (@as(Z, 1) << (significandBits + exponentBits));
|
||||
const maxExponent = ((1 << exponentBits) - 1);
|
||||
const exponentBias = (maxExponent >> 1);
|
||||
|
||||
const integerBit = (@as(Z, 1) << fractionalBits);
|
||||
const quietBit = integerBit >> 1;
|
||||
const significandMask = (@as(Z, 1) << significandBits) - 1;
|
||||
|
||||
const absMask = signBit - 1;
|
||||
const qnanRep = @bitCast(Z, std.math.nan(T)) | quietBit;
|
||||
const infRep = @bitCast(Z, std.math.inf(T));
|
||||
|
||||
const aExponent = @truncate(u32, (@bitCast(Z, a) >> significandBits) & maxExponent);
|
||||
const bExponent = @truncate(u32, (@bitCast(Z, b) >> significandBits) & maxExponent);
|
||||
const quotientSign: Z = (@bitCast(Z, a) ^ @bitCast(Z, b)) & signBit;
|
||||
|
||||
var aSignificand: Z = @bitCast(Z, a) & significandMask;
|
||||
var bSignificand: Z = @bitCast(Z, b) & significandMask;
|
||||
var scale: i32 = 0;
|
||||
|
||||
// Detect if a or b is zero, denormal, infinity, or NaN.
|
||||
if (aExponent -% 1 >= maxExponent - 1 or bExponent -% 1 >= maxExponent - 1) {
|
||||
const aAbs: Z = @bitCast(Z, a) & absMask;
|
||||
const bAbs: Z = @bitCast(Z, b) & absMask;
|
||||
|
||||
// NaN / anything = qNaN
|
||||
if (aAbs > infRep) return @bitCast(T, @bitCast(Z, a) | quietBit);
|
||||
// anything / NaN = qNaN
|
||||
if (bAbs > infRep) return @bitCast(T, @bitCast(Z, b) | quietBit);
|
||||
|
||||
if (aAbs == infRep) {
|
||||
// infinity / infinity = NaN
|
||||
if (bAbs == infRep) {
|
||||
return @bitCast(T, qnanRep);
|
||||
}
|
||||
// infinity / anything else = +/- infinity
|
||||
else {
|
||||
return @bitCast(T, aAbs | quotientSign);
|
||||
}
|
||||
}
|
||||
|
||||
// anything else / infinity = +/- 0
|
||||
if (bAbs == infRep) return @bitCast(T, quotientSign);
|
||||
|
||||
if (aAbs == 0) {
|
||||
// zero / zero = NaN
|
||||
if (bAbs == 0) {
|
||||
return @bitCast(T, qnanRep);
|
||||
}
|
||||
// zero / anything else = +/- zero
|
||||
else {
|
||||
return @bitCast(T, quotientSign);
|
||||
}
|
||||
}
|
||||
// anything else / zero = +/- infinity
|
||||
if (bAbs == 0) return @bitCast(T, infRep | quotientSign);
|
||||
|
||||
// one or both of a or b is denormal, the other (if applicable) is a
|
||||
// normal number. Renormalize one or both of a and b, and set scale to
|
||||
// include the necessary exponent adjustment.
|
||||
if (aAbs < integerBit) scale +%= normalize(T, &aSignificand);
|
||||
if (bAbs < integerBit) scale -%= normalize(T, &bSignificand);
|
||||
}
|
||||
var quotientExponent: i32 = @bitCast(i32, aExponent -% bExponent) +% scale;
|
||||
|
||||
// Align the significand of b as a Q63 fixed-point number in the range
|
||||
// [1, 2.0) and get a Q64 approximate reciprocal using a small minimax
|
||||
// polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
|
||||
// is accurate to about 3.5 binary digits.
|
||||
const q63b = @intCast(u64, bSignificand);
|
||||
var recip64 = @as(u64, 0x7504f333F9DE6484) -% q63b;
|
||||
// 0x7504f333F9DE6484 / 2^64 + 1 = 3/4 + 1/sqrt(2)
|
||||
|
||||
// Now refine the reciprocal estimate using a Newton-Raphson iteration:
|
||||
//
|
||||
// x1 = x0 * (2 - x0 * b)
|
||||
//
|
||||
// This doubles the number of correct binary digits in the approximation
|
||||
// with each iteration.
|
||||
var correction64: u64 = undefined;
|
||||
correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
|
||||
recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
|
||||
correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
|
||||
recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
|
||||
correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
|
||||
recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
|
||||
correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
|
||||
recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
|
||||
correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
|
||||
recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
|
||||
|
||||
// The reciprocal may have overflowed to zero if the upper half of b is
|
||||
// exactly 1.0. This would sabatoge the full-width final stage of the
|
||||
// computation that follows, so we adjust the reciprocal down by one bit.
|
||||
recip64 -%= 1;
|
||||
|
||||
// We need to perform one more iteration to get us to 112 binary digits;
|
||||
// The last iteration needs to happen with extra precision.
|
||||
|
||||
// NOTE: This operation is equivalent to __multi3, which is not implemented
|
||||
// in some architechures
|
||||
var reciprocal: u128 = undefined;
|
||||
var correction: u128 = undefined;
|
||||
var dummy: u128 = undefined;
|
||||
wideMultiply(u128, recip64, q63b, &dummy, &correction);
|
||||
|
||||
correction = -%correction;
|
||||
|
||||
const cHi = @truncate(u64, correction >> 64);
|
||||
const cLo = @truncate(u64, correction);
|
||||
|
||||
var r64cH: u128 = undefined;
|
||||
var r64cL: u128 = undefined;
|
||||
wideMultiply(u128, recip64, cHi, &dummy, &r64cH);
|
||||
wideMultiply(u128, recip64, cLo, &dummy, &r64cL);
|
||||
|
||||
reciprocal = r64cH + (r64cL >> 64);
|
||||
|
||||
// Adjust the final 128-bit reciprocal estimate downward to ensure that it
|
||||
// is strictly smaller than the infinitely precise exact reciprocal. Because
|
||||
// the computation of the Newton-Raphson step is truncating at every step,
|
||||
// this adjustment is small; most of the work is already done.
|
||||
reciprocal -%= 2;
|
||||
|
||||
// The numerical reciprocal is accurate to within 2^-112, lies in the
|
||||
// interval [0.5, 1.0), and is strictly smaller than the true reciprocal
|
||||
// of b. Multiplying a by this reciprocal thus gives a numerical q = a/b
|
||||
// in Q127 with the following properties:
|
||||
//
|
||||
// 1. q < a/b
|
||||
// 2. q is in the interval [0.5, 2.0)
|
||||
// 3. The error in q is bounded away from 2^-63 (actually, we have
|
||||
// many bits to spare, but this is all we need).
|
||||
|
||||
// We need a 128 x 128 multiply high to compute q.
|
||||
var quotient128: u128 = undefined;
|
||||
var quotientLo: u128 = undefined;
|
||||
wideMultiply(u128, aSignificand << 2, reciprocal, "ient128, "ientLo);
|
||||
|
||||
// Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
|
||||
// Right shift the quotient if it falls in the [1,2) range and adjust the
|
||||
// exponent accordingly.
|
||||
var quotient: u64 = if (quotient128 < (integerBit << 1)) b: {
|
||||
quotientExponent -= 1;
|
||||
break :b @intCast(u64, quotient128);
|
||||
} else @intCast(u64, quotient128 >> 1);
|
||||
|
||||
// We are going to compute a residual of the form
|
||||
//
|
||||
// r = a - q*b
|
||||
//
|
||||
// We know from the construction of q that r satisfies:
|
||||
//
|
||||
// 0 <= r < ulp(q)*b
|
||||
//
|
||||
// If r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
|
||||
// already have the correct result. The exact halfway case cannot occur.
|
||||
var residual: u64 = -%(quotient *% q63b);
|
||||
|
||||
const writtenExponent = quotientExponent + exponentBias;
|
||||
if (writtenExponent >= maxExponent) {
|
||||
// If we have overflowed the exponent, return infinity.
|
||||
return @bitCast(T, infRep | quotientSign);
|
||||
} else if (writtenExponent < 1) {
|
||||
if (writtenExponent == 0) {
|
||||
// Check whether the rounded result is normal.
|
||||
if (residual > (bSignificand >> 1)) { // round
|
||||
if (quotient == (integerBit - 1)) // If the rounded result is normal, return it
|
||||
return @bitCast(T, @bitCast(Z, std.math.floatMin(T)) | quotientSign);
|
||||
}
|
||||
}
|
||||
// Flush denormals to zero. In the future, it would be nice to add
|
||||
// code to round them correctly.
|
||||
return @bitCast(T, quotientSign);
|
||||
} else {
|
||||
const round = @boolToInt(residual > (bSignificand >> 1));
|
||||
// Insert the exponent
|
||||
var absResult = quotient | (@intCast(Z, writtenExponent) << significandBits);
|
||||
// Round
|
||||
absResult +%= round;
|
||||
// Insert the sign and return
|
||||
return @bitCast(T, absResult | quotientSign | integerBit);
|
||||
}
|
||||
}
|
||||
|
||||
test {
|
||||
_ = @import("divxf3_test.zig");
|
||||
}
|
||||
65
lib/std/special/compiler_rt/divxf3_test.zig
Normal file
65
lib/std/special/compiler_rt/divxf3_test.zig
Normal file
@ -0,0 +1,65 @@
|
||||
const std = @import("std");
|
||||
const math = std.math;
|
||||
const testing = std.testing;
|
||||
|
||||
const __divxf3 = @import("divxf3.zig").__divxf3;
|
||||
|
||||
fn compareResult(result: f80, expected: u80) bool {
|
||||
const rep = @bitCast(u80, result);
|
||||
|
||||
if (rep == expected) return true;
|
||||
// test other possible NaN representations (signal NaN)
|
||||
if (math.isNan(result) and math.isNan(@bitCast(f80, expected))) return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
fn expect__divxf3_result(a: f80, b: f80, expected: u80) !void {
|
||||
const x = __divxf3(a, b);
|
||||
const ret = compareResult(x, expected);
|
||||
try testing.expect(ret == true);
|
||||
}
|
||||
|
||||
fn test__divxf3(a: f80, b: f80) !void {
|
||||
const integerBit = 1 << math.floatFractionalBits(f80);
|
||||
const x = __divxf3(a, b);
|
||||
|
||||
// Next float (assuming normal, non-zero result)
|
||||
const x_plus_eps = @bitCast(f80, (@bitCast(u80, x) + 1) | integerBit);
|
||||
// Prev float (assuming normal, non-zero result)
|
||||
const x_minus_eps = @bitCast(f80, (@bitCast(u80, x) - 1) | integerBit);
|
||||
|
||||
// Make sure result is more accurate than the adjacent floats
|
||||
const err_x = std.math.fabs(@mulAdd(f80, x, b, -a));
|
||||
const err_x_plus_eps = std.math.fabs(@mulAdd(f80, x_plus_eps, b, -a));
|
||||
const err_x_minus_eps = std.math.fabs(@mulAdd(f80, x_minus_eps, b, -a));
|
||||
|
||||
try testing.expect(err_x_minus_eps > err_x);
|
||||
try testing.expect(err_x_plus_eps > err_x);
|
||||
}
|
||||
|
||||
test "divxf3" {
|
||||
// qNaN / any = qNaN
|
||||
try expect__divxf3_result(math.qnan_f80, 0x1.23456789abcdefp+5, 0x7fffC000000000000000);
|
||||
// NaN / any = NaN
|
||||
try expect__divxf3_result(math.nan_f80, 0x1.23456789abcdefp+5, 0x7fffC000000000000000);
|
||||
// inf / any(except inf and nan) = inf
|
||||
try expect__divxf3_result(math.inf(f80), 0x1.23456789abcdefp+5, 0x7fff8000000000000000);
|
||||
// inf / inf = nan
|
||||
try expect__divxf3_result(math.inf(f80), math.inf(f80), 0x7fffC000000000000000);
|
||||
// inf / nan = nan
|
||||
try expect__divxf3_result(math.inf(f80), math.nan(f80), 0x7fffC000000000000000);
|
||||
|
||||
try test__divxf3(0x1.a23b45362464523375893ab4cdefp+5, 0x1.eedcbaba3a94546558237654321fp-1);
|
||||
try test__divxf3(0x1.a2b34c56d745382f9abf2c3dfeffp-50, 0x1.ed2c3ba15935332532287654321fp-9);
|
||||
try test__divxf3(0x1.2345f6aaaa786555f42432abcdefp+456, 0x1.edacbba9874f765463544dd3621fp+6400);
|
||||
try test__divxf3(0x1.2d3456f789ba6322bc665544edefp-234, 0x1.eddcdba39f3c8b7a36564354321fp-4455);
|
||||
try test__divxf3(0x1.2345f6b77b7a8953365433abcdefp+234, 0x1.edcba987d6bb3aa467754354321fp-4055);
|
||||
try test__divxf3(0x1.a23b45362464523375893ab4cdefp+5, 0x1.a2b34c56d745382f9abf2c3dfeffp-50);
|
||||
try test__divxf3(0x1.a23b45362464523375893ab4cdefp+5, 0x1.1234567890abcdef987654321123p0);
|
||||
try test__divxf3(0x1.a23b45362464523375893ab4cdefp+5, 0x1.12394205810257120adae8929f23p+16);
|
||||
try test__divxf3(0x1.a23b45362464523375893ab4cdefp+5, 0x1.febdcefa1231245f9abf2c3dfeffp-50);
|
||||
|
||||
// Result rounds down to zero
|
||||
try expect__divxf3_result(6.72420628622418701252535563464350521E-4932, 2.0, 0x0);
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user