compiler_rt: Implement __divxf3 for f80

This commit is contained in:
Cody Tapscott 2022-04-25 16:31:43 -07:00
parent 6c0114e044
commit d930e015c7
3 changed files with 274 additions and 9 deletions

View File

@ -253,6 +253,8 @@ comptime {
@export(__divsf3, .{ .name = "__divsf3", .linkage = linkage });
const __divdf3 = @import("compiler_rt/divdf3.zig").__divdf3;
@export(__divdf3, .{ .name = "__divdf3", .linkage = linkage });
const __divxf3 = @import("compiler_rt/divxf3.zig").__divxf3;
@export(__divxf3, .{ .name = "__divxf3", .linkage = linkage });
const __divtf3 = @import("compiler_rt/divtf3.zig").__divtf3;
@export(__divtf3, .{ .name = "__divtf3", .linkage = linkage });
@ -725,17 +727,13 @@ comptime {
}
if (!is_test) {
@export(fmodl, .{ .name = "fmodl", .linkage = linkage });
if (long_double_is_f80) {
@export(fmodl, .{ .name = "fmodx", .linkage = linkage });
} else {
@export(fmodx, .{ .name = "fmodx", .linkage = linkage });
}
if (long_double_is_f128) {
@export(fmodl, .{ .name = "fmodq", .linkage = linkage });
} else {
@export(fmodq, .{ .name = "fmodq", .linkage = linkage });
@export(fmodx, .{ .name = "fmodl", .linkage = linkage });
} else if (long_double_is_f128) {
@export(fmodq, .{ .name = "fmodl", .linkage = linkage });
}
@export(fmodx, .{ .name = "fmodx", .linkage = linkage });
@export(fmodq, .{ .name = "fmodq", .linkage = linkage });
@export(floorf, .{ .name = "floorf", .linkage = linkage });
@export(floor, .{ .name = "floor", .linkage = linkage });

View File

@ -0,0 +1,202 @@
const std = @import("std");
const builtin = @import("builtin");
const normalize = @import("divdf3.zig").normalize;
const wideMultiply = @import("divdf3.zig").wideMultiply;
pub fn __divxf3(a: f80, b: f80) callconv(.C) f80 {
@setRuntimeSafety(builtin.is_test);
const T = f80;
const Z = std.meta.Int(.unsigned, @bitSizeOf(T));
const significandBits = std.math.floatMantissaBits(T);
const fractionalBits = std.math.floatFractionalBits(T);
const exponentBits = std.math.floatExponentBits(T);
const signBit = (@as(Z, 1) << (significandBits + exponentBits));
const maxExponent = ((1 << exponentBits) - 1);
const exponentBias = (maxExponent >> 1);
const integerBit = (@as(Z, 1) << fractionalBits);
const quietBit = integerBit >> 1;
const significandMask = (@as(Z, 1) << significandBits) - 1;
const absMask = signBit - 1;
const qnanRep = @bitCast(Z, std.math.nan(T)) | quietBit;
const infRep = @bitCast(Z, std.math.inf(T));
const aExponent = @truncate(u32, (@bitCast(Z, a) >> significandBits) & maxExponent);
const bExponent = @truncate(u32, (@bitCast(Z, b) >> significandBits) & maxExponent);
const quotientSign: Z = (@bitCast(Z, a) ^ @bitCast(Z, b)) & signBit;
var aSignificand: Z = @bitCast(Z, a) & significandMask;
var bSignificand: Z = @bitCast(Z, b) & significandMask;
var scale: i32 = 0;
// Detect if a or b is zero, denormal, infinity, or NaN.
if (aExponent -% 1 >= maxExponent - 1 or bExponent -% 1 >= maxExponent - 1) {
const aAbs: Z = @bitCast(Z, a) & absMask;
const bAbs: Z = @bitCast(Z, b) & absMask;
// NaN / anything = qNaN
if (aAbs > infRep) return @bitCast(T, @bitCast(Z, a) | quietBit);
// anything / NaN = qNaN
if (bAbs > infRep) return @bitCast(T, @bitCast(Z, b) | quietBit);
if (aAbs == infRep) {
// infinity / infinity = NaN
if (bAbs == infRep) {
return @bitCast(T, qnanRep);
}
// infinity / anything else = +/- infinity
else {
return @bitCast(T, aAbs | quotientSign);
}
}
// anything else / infinity = +/- 0
if (bAbs == infRep) return @bitCast(T, quotientSign);
if (aAbs == 0) {
// zero / zero = NaN
if (bAbs == 0) {
return @bitCast(T, qnanRep);
}
// zero / anything else = +/- zero
else {
return @bitCast(T, quotientSign);
}
}
// anything else / zero = +/- infinity
if (bAbs == 0) return @bitCast(T, infRep | quotientSign);
// one or both of a or b is denormal, the other (if applicable) is a
// normal number. Renormalize one or both of a and b, and set scale to
// include the necessary exponent adjustment.
if (aAbs < integerBit) scale +%= normalize(T, &aSignificand);
if (bAbs < integerBit) scale -%= normalize(T, &bSignificand);
}
var quotientExponent: i32 = @bitCast(i32, aExponent -% bExponent) +% scale;
// Align the significand of b as a Q63 fixed-point number in the range
// [1, 2.0) and get a Q64 approximate reciprocal using a small minimax
// polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
// is accurate to about 3.5 binary digits.
const q63b = @intCast(u64, bSignificand);
var recip64 = @as(u64, 0x7504f333F9DE6484) -% q63b;
// 0x7504f333F9DE6484 / 2^64 + 1 = 3/4 + 1/sqrt(2)
// Now refine the reciprocal estimate using a Newton-Raphson iteration:
//
// x1 = x0 * (2 - x0 * b)
//
// This doubles the number of correct binary digits in the approximation
// with each iteration.
var correction64: u64 = undefined;
correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
// The reciprocal may have overflowed to zero if the upper half of b is
// exactly 1.0. This would sabatoge the full-width final stage of the
// computation that follows, so we adjust the reciprocal down by one bit.
recip64 -%= 1;
// We need to perform one more iteration to get us to 112 binary digits;
// The last iteration needs to happen with extra precision.
// NOTE: This operation is equivalent to __multi3, which is not implemented
// in some architechures
var reciprocal: u128 = undefined;
var correction: u128 = undefined;
var dummy: u128 = undefined;
wideMultiply(u128, recip64, q63b, &dummy, &correction);
correction = -%correction;
const cHi = @truncate(u64, correction >> 64);
const cLo = @truncate(u64, correction);
var r64cH: u128 = undefined;
var r64cL: u128 = undefined;
wideMultiply(u128, recip64, cHi, &dummy, &r64cH);
wideMultiply(u128, recip64, cLo, &dummy, &r64cL);
reciprocal = r64cH + (r64cL >> 64);
// Adjust the final 128-bit reciprocal estimate downward to ensure that it
// is strictly smaller than the infinitely precise exact reciprocal. Because
// the computation of the Newton-Raphson step is truncating at every step,
// this adjustment is small; most of the work is already done.
reciprocal -%= 2;
// The numerical reciprocal is accurate to within 2^-112, lies in the
// interval [0.5, 1.0), and is strictly smaller than the true reciprocal
// of b. Multiplying a by this reciprocal thus gives a numerical q = a/b
// in Q127 with the following properties:
//
// 1. q < a/b
// 2. q is in the interval [0.5, 2.0)
// 3. The error in q is bounded away from 2^-63 (actually, we have
// many bits to spare, but this is all we need).
// We need a 128 x 128 multiply high to compute q.
var quotient128: u128 = undefined;
var quotientLo: u128 = undefined;
wideMultiply(u128, aSignificand << 2, reciprocal, &quotient128, &quotientLo);
// Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
// Right shift the quotient if it falls in the [1,2) range and adjust the
// exponent accordingly.
var quotient: u64 = if (quotient128 < (integerBit << 1)) b: {
quotientExponent -= 1;
break :b @intCast(u64, quotient128);
} else @intCast(u64, quotient128 >> 1);
// We are going to compute a residual of the form
//
// r = a - q*b
//
// We know from the construction of q that r satisfies:
//
// 0 <= r < ulp(q)*b
//
// If r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
// already have the correct result. The exact halfway case cannot occur.
var residual: u64 = -%(quotient *% q63b);
const writtenExponent = quotientExponent + exponentBias;
if (writtenExponent >= maxExponent) {
// If we have overflowed the exponent, return infinity.
return @bitCast(T, infRep | quotientSign);
} else if (writtenExponent < 1) {
if (writtenExponent == 0) {
// Check whether the rounded result is normal.
if (residual > (bSignificand >> 1)) { // round
if (quotient == (integerBit - 1)) // If the rounded result is normal, return it
return @bitCast(T, @bitCast(Z, std.math.floatMin(T)) | quotientSign);
}
}
// Flush denormals to zero. In the future, it would be nice to add
// code to round them correctly.
return @bitCast(T, quotientSign);
} else {
const round = @boolToInt(residual > (bSignificand >> 1));
// Insert the exponent
var absResult = quotient | (@intCast(Z, writtenExponent) << significandBits);
// Round
absResult +%= round;
// Insert the sign and return
return @bitCast(T, absResult | quotientSign | integerBit);
}
}
test {
_ = @import("divxf3_test.zig");
}

View File

@ -0,0 +1,65 @@
const std = @import("std");
const math = std.math;
const testing = std.testing;
const __divxf3 = @import("divxf3.zig").__divxf3;
fn compareResult(result: f80, expected: u80) bool {
const rep = @bitCast(u80, result);
if (rep == expected) return true;
// test other possible NaN representations (signal NaN)
if (math.isNan(result) and math.isNan(@bitCast(f80, expected))) return true;
return false;
}
fn expect__divxf3_result(a: f80, b: f80, expected: u80) !void {
const x = __divxf3(a, b);
const ret = compareResult(x, expected);
try testing.expect(ret == true);
}
fn test__divxf3(a: f80, b: f80) !void {
const integerBit = 1 << math.floatFractionalBits(f80);
const x = __divxf3(a, b);
// Next float (assuming normal, non-zero result)
const x_plus_eps = @bitCast(f80, (@bitCast(u80, x) + 1) | integerBit);
// Prev float (assuming normal, non-zero result)
const x_minus_eps = @bitCast(f80, (@bitCast(u80, x) - 1) | integerBit);
// Make sure result is more accurate than the adjacent floats
const err_x = std.math.fabs(@mulAdd(f80, x, b, -a));
const err_x_plus_eps = std.math.fabs(@mulAdd(f80, x_plus_eps, b, -a));
const err_x_minus_eps = std.math.fabs(@mulAdd(f80, x_minus_eps, b, -a));
try testing.expect(err_x_minus_eps > err_x);
try testing.expect(err_x_plus_eps > err_x);
}
test "divxf3" {
// qNaN / any = qNaN
try expect__divxf3_result(math.qnan_f80, 0x1.23456789abcdefp+5, 0x7fffC000000000000000);
// NaN / any = NaN
try expect__divxf3_result(math.nan_f80, 0x1.23456789abcdefp+5, 0x7fffC000000000000000);
// inf / any(except inf and nan) = inf
try expect__divxf3_result(math.inf(f80), 0x1.23456789abcdefp+5, 0x7fff8000000000000000);
// inf / inf = nan
try expect__divxf3_result(math.inf(f80), math.inf(f80), 0x7fffC000000000000000);
// inf / nan = nan
try expect__divxf3_result(math.inf(f80), math.nan(f80), 0x7fffC000000000000000);
try test__divxf3(0x1.a23b45362464523375893ab4cdefp+5, 0x1.eedcbaba3a94546558237654321fp-1);
try test__divxf3(0x1.a2b34c56d745382f9abf2c3dfeffp-50, 0x1.ed2c3ba15935332532287654321fp-9);
try test__divxf3(0x1.2345f6aaaa786555f42432abcdefp+456, 0x1.edacbba9874f765463544dd3621fp+6400);
try test__divxf3(0x1.2d3456f789ba6322bc665544edefp-234, 0x1.eddcdba39f3c8b7a36564354321fp-4455);
try test__divxf3(0x1.2345f6b77b7a8953365433abcdefp+234, 0x1.edcba987d6bb3aa467754354321fp-4055);
try test__divxf3(0x1.a23b45362464523375893ab4cdefp+5, 0x1.a2b34c56d745382f9abf2c3dfeffp-50);
try test__divxf3(0x1.a23b45362464523375893ab4cdefp+5, 0x1.1234567890abcdef987654321123p0);
try test__divxf3(0x1.a23b45362464523375893ab4cdefp+5, 0x1.12394205810257120adae8929f23p+16);
try test__divxf3(0x1.a23b45362464523375893ab4cdefp+5, 0x1.febdcefa1231245f9abf2c3dfeffp-50);
// Result rounds down to zero
try expect__divxf3_result(6.72420628622418701252535563464350521E-4932, 2.0, 0x0);
}