ir: Support shift left/right on vectors

This commit is contained in:
LemonBoy 2020-03-14 20:01:28 +01:00 committed by Andrew Kelley
parent 2485f30046
commit d2d97e55cc
No known key found for this signature in database
GPG Key ID: 7C5F548F728501A9
3 changed files with 184 additions and 49 deletions

View File

@ -155,6 +155,7 @@ static LLVMValueRef gen_await_early_return(CodeGen *g, IrInstGen *source_instr,
LLVMValueRef target_frame_ptr, ZigType *result_type, ZigType *ptr_result_type,
LLVMValueRef result_loc, bool non_async);
static Error get_tmp_filename(CodeGen *g, Buf *out, Buf *suffix);
static LLVMValueRef scalarize_cmp_result(CodeGen *g, LLVMValueRef val);
static void addLLVMAttr(LLVMValueRef val, LLVMAttributeIndex attr_index, const char *attr_name) {
unsigned kind_id = LLVMGetEnumAttributeKindForName(attr_name, strlen(attr_name));
@ -2535,19 +2536,21 @@ static LLVMValueRef ir_render_return(CodeGen *g, IrExecutableGen *executable, Ir
return nullptr;
}
static LLVMValueRef gen_overflow_shl_op(CodeGen *g, ZigType *type_entry,
LLVMValueRef val1, LLVMValueRef val2)
static LLVMValueRef gen_overflow_shl_op(CodeGen *g, ZigType *operand_type,
LLVMValueRef val1, LLVMValueRef val2)
{
// for unsigned left shifting, we do the lossy shift, then logically shift
// right the same number of bits
// if the values don't match, we have an overflow
// for signed left shifting we do the same except arithmetic shift right
ZigType *scalar_type = (operand_type->id == ZigTypeIdVector) ?
operand_type->data.vector.elem_type : operand_type;
assert(type_entry->id == ZigTypeIdInt);
assert(scalar_type->id == ZigTypeIdInt);
LLVMValueRef result = LLVMBuildShl(g->builder, val1, val2, "");
LLVMValueRef orig_val;
if (type_entry->data.integral.is_signed) {
if (scalar_type->data.integral.is_signed) {
orig_val = LLVMBuildAShr(g->builder, result, val2, "");
} else {
orig_val = LLVMBuildLShr(g->builder, result, val2, "");
@ -2556,6 +2559,9 @@ static LLVMValueRef gen_overflow_shl_op(CodeGen *g, ZigType *type_entry,
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "OverflowOk");
LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "OverflowFail");
if (operand_type->id == ZigTypeIdVector) {
ok_bit = scalarize_cmp_result(g, ok_bit);
}
LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block);
LLVMPositionBuilderAtEnd(g->builder, fail_block);
@ -2565,13 +2571,16 @@ static LLVMValueRef gen_overflow_shl_op(CodeGen *g, ZigType *type_entry,
return result;
}
static LLVMValueRef gen_overflow_shr_op(CodeGen *g, ZigType *type_entry,
LLVMValueRef val1, LLVMValueRef val2)
static LLVMValueRef gen_overflow_shr_op(CodeGen *g, ZigType *operand_type,
LLVMValueRef val1, LLVMValueRef val2)
{
assert(type_entry->id == ZigTypeIdInt);
ZigType *scalar_type = (operand_type->id == ZigTypeIdVector) ?
operand_type->data.vector.elem_type : operand_type;
assert(scalar_type->id == ZigTypeIdInt);
LLVMValueRef result;
if (type_entry->data.integral.is_signed) {
if (scalar_type->data.integral.is_signed) {
result = LLVMBuildAShr(g->builder, val1, val2, "");
} else {
result = LLVMBuildLShr(g->builder, val1, val2, "");
@ -2581,6 +2590,9 @@ static LLVMValueRef gen_overflow_shr_op(CodeGen *g, ZigType *type_entry,
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "OverflowOk");
LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "OverflowFail");
if (operand_type->id == ZigTypeIdVector) {
ok_bit = scalarize_cmp_result(g, ok_bit);
}
LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block);
LLVMPositionBuilderAtEnd(g->builder, fail_block);
@ -2897,11 +2909,17 @@ static void gen_shift_rhs_check(CodeGen *g, ZigType *lhs_type, ZigType *rhs_type
// otherwise the check is useful as the allowed values are limited by the
// operand type itself
if (!is_power_of_2(lhs_type->data.integral.bit_count)) {
LLVMValueRef bit_count_value = LLVMConstInt(get_llvm_type(g, rhs_type),
lhs_type->data.integral.bit_count, false);
LLVMValueRef less_than_bit = LLVMBuildICmp(g->builder, LLVMIntULT, value, bit_count_value, "");
BigInt bit_count_bi = {0};
bigint_init_unsigned(&bit_count_bi, lhs_type->data.integral.bit_count);
LLVMValueRef bit_count_value = bigint_to_llvm_const(get_llvm_type(g, rhs_type),
&bit_count_bi);
LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "CheckFail");
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "CheckOk");
LLVMValueRef less_than_bit = LLVMBuildICmp(g->builder, LLVMIntULT, value, bit_count_value, "");
if (rhs_type->id == ZigTypeIdVector) {
less_than_bit = scalarize_cmp_result(g, less_than_bit);
}
LLVMBuildCondBr(g->builder, less_than_bit, ok_block, fail_block);
LLVMPositionBuilderAtEnd(g->builder, fail_block);
@ -3018,7 +3036,8 @@ static LLVMValueRef ir_render_bin_op(CodeGen *g, IrExecutableGen *executable,
case IrBinOpBitShiftLeftExact:
{
assert(scalar_type->id == ZigTypeIdInt);
LLVMValueRef op2_casted = gen_widen_or_shorten(g, false, op2->value->type, scalar_type, op2_value);
LLVMValueRef op2_casted = LLVMBuildZExt(g->builder, op2_value,
LLVMTypeOf(op1_value), "");//gen_widen_or_shorten(g, false, op2->value->type, scalar_type, op2_value);
if (want_runtime_safety) {
gen_shift_rhs_check(g, scalar_type, op2->value->type, op2_value);
@ -3028,7 +3047,7 @@ static LLVMValueRef ir_render_bin_op(CodeGen *g, IrExecutableGen *executable,
if (is_sloppy) {
return LLVMBuildShl(g->builder, op1_value, op2_casted, "");
} else if (want_runtime_safety) {
return gen_overflow_shl_op(g, scalar_type, op1_value, op2_casted);
return gen_overflow_shl_op(g, operand_type, op1_value, op2_casted);
} else if (scalar_type->data.integral.is_signed) {
return ZigLLVMBuildNSWShl(g->builder, op1_value, op2_casted, "");
} else {
@ -3039,7 +3058,8 @@ static LLVMValueRef ir_render_bin_op(CodeGen *g, IrExecutableGen *executable,
case IrBinOpBitShiftRightExact:
{
assert(scalar_type->id == ZigTypeIdInt);
LLVMValueRef op2_casted = gen_widen_or_shorten(g, false, op2->value->type, scalar_type, op2_value);
LLVMValueRef op2_casted = LLVMBuildZExt(g->builder, op2_value,
LLVMTypeOf(op1_value), "");//gen_widen_or_shorten(g, false, op2->value->type, scalar_type, op2_value);
if (want_runtime_safety) {
gen_shift_rhs_check(g, scalar_type, op2->value->type, op2_value);
@ -3053,7 +3073,7 @@ static LLVMValueRef ir_render_bin_op(CodeGen *g, IrExecutableGen *executable,
return LLVMBuildLShr(g->builder, op1_value, op2_casted, "");
}
} else if (want_runtime_safety) {
return gen_overflow_shr_op(g, scalar_type, op1_value, op2_casted);
return gen_overflow_shr_op(g, operand_type, op1_value, op2_casted);
} else if (scalar_type->data.integral.is_signed) {
return ZigLLVMBuildAShrExact(g->builder, op1_value, op2_casted, "");
} else {

View File

@ -283,6 +283,8 @@ static IrInstGen *ir_analyze_union_init(IrAnalyze *ira, IrInst* source_instructi
IrInstGen *result_loc);
static IrInstGen *ir_analyze_struct_value_field_value(IrAnalyze *ira, IrInst* source_instr,
IrInstGen *struct_operand, TypeStructField *field);
static bool value_cmp_numeric_val_any(ZigValue *left, Cmp predicate, ZigValue *right);
static bool value_cmp_numeric_val_all(ZigValue *left, Cmp predicate, ZigValue *right);
static void destroy_instruction_src(IrInstSrc *inst) {
switch (inst->id) {
@ -16803,7 +16805,6 @@ static IrInstGen *ir_analyze_math_op(IrAnalyze *ira, IrInst* source_instr,
ZigValue *scalar_op2_val = &op2_val->data.x_array.data.s_none.elements[i];
ZigValue *scalar_out_val = &out_val->data.x_array.data.s_none.elements[i];
assert(scalar_op1_val->type == scalar_type);
assert(scalar_op2_val->type == scalar_type);
assert(scalar_out_val->type == scalar_type);
ErrorMsg *msg = ir_eval_math_op_scalar(ira, source_instr, scalar_type,
scalar_op1_val, op_id, scalar_op2_val, scalar_out_val);
@ -16828,27 +16829,49 @@ static IrInstGen *ir_analyze_bit_shift(IrAnalyze *ira, IrInstSrcBinOp *bin_op_in
if (type_is_invalid(op1->value->type))
return ira->codegen->invalid_inst_gen;
if (op1->value->type->id != ZigTypeIdInt && op1->value->type->id != ZigTypeIdComptimeInt) {
ir_add_error(ira, &bin_op_instruction->op1->base,
buf_sprintf("bit shifting operation expected integer type, found '%s'",
buf_ptr(&op1->value->type->name)));
return ira->codegen->invalid_inst_gen;
}
IrInstGen *op2 = bin_op_instruction->op2->child;
if (type_is_invalid(op2->value->type))
return ira->codegen->invalid_inst_gen;
if (op2->value->type->id != ZigTypeIdInt && op2->value->type->id != ZigTypeIdComptimeInt) {
ZigType *op1_type = op1->value->type;
ZigType *op2_type = op2->value->type;
if (op1_type->id == ZigTypeIdVector && op2_type->id != ZigTypeIdVector) {
ir_add_error(ira, &bin_op_instruction->op1->base,
buf_sprintf("bit shifting operation expected vector type, found '%s'",
buf_ptr(&op2_type->name)));
return ira->codegen->invalid_inst_gen;
}
if (op1_type->id != ZigTypeIdVector && op2_type->id == ZigTypeIdVector) {
ir_add_error(ira, &bin_op_instruction->op1->base,
buf_sprintf("bit shifting operation expected vector type, found '%s'",
buf_ptr(&op1_type->name)));
return ira->codegen->invalid_inst_gen;
}
ZigType *op1_scalar_type = (op1_type->id == ZigTypeIdVector) ?
op1_type->data.vector.elem_type : op1_type;
ZigType *op2_scalar_type = (op2_type->id == ZigTypeIdVector) ?
op2_type->data.vector.elem_type : op2_type;
if (op1_scalar_type->id != ZigTypeIdInt && op1_scalar_type->id != ZigTypeIdComptimeInt) {
ir_add_error(ira, &bin_op_instruction->op1->base,
buf_sprintf("bit shifting operation expected integer type, found '%s'",
buf_ptr(&op1_scalar_type->name)));
return ira->codegen->invalid_inst_gen;
}
if (op2_scalar_type->id != ZigTypeIdInt && op2_scalar_type->id != ZigTypeIdComptimeInt) {
ir_add_error(ira, &bin_op_instruction->op2->base,
buf_sprintf("shift amount has to be an integer type, but found '%s'",
buf_ptr(&op2->value->type->name)));
buf_ptr(&op2_scalar_type->name)));
return ira->codegen->invalid_inst_gen;
}
IrInstGen *casted_op2;
IrBinOp op_id = bin_op_instruction->op_id;
if (op1->value->type->id == ZigTypeIdComptimeInt) {
if (op1_scalar_type->id == ZigTypeIdComptimeInt) {
// comptime_int has no finite bit width
casted_op2 = op2;
@ -16874,10 +16897,15 @@ static IrInstGen *ir_analyze_bit_shift(IrAnalyze *ira, IrInstSrcBinOp *bin_op_in
return ira->codegen->invalid_inst_gen;
}
} else {
const unsigned bit_count = op1->value->type->data.integral.bit_count;
const unsigned bit_count = op1_scalar_type->data.integral.bit_count;
ZigType *shift_amt_type = get_smallest_unsigned_int_type(ira->codegen,
bit_count > 0 ? bit_count - 1 : 0);
if (op1_type->id == ZigTypeIdVector) {
shift_amt_type = get_vector_type(ira->codegen, op1_type->data.vector.len,
shift_amt_type);
}
casted_op2 = ir_implicit_cast(ira, op2, shift_amt_type);
if (type_is_invalid(casted_op2->value->type))
return ira->codegen->invalid_inst_gen;
@ -16888,10 +16916,10 @@ static IrInstGen *ir_analyze_bit_shift(IrAnalyze *ira, IrInstSrcBinOp *bin_op_in
if (op2_val == nullptr)
return ira->codegen->invalid_inst_gen;
BigInt bit_count_value = {0};
bigint_init_unsigned(&bit_count_value, bit_count);
ZigValue bit_count_value;
init_const_usize(ira->codegen, &bit_count_value, bit_count);
if (bigint_cmp(&op2_val->data.x_bigint, &bit_count_value) != CmpLT) {
if (!value_cmp_numeric_val_all(op2_val, CmpLT, &bit_count_value)) {
ErrorMsg* msg = ir_add_error(ira,
&bin_op_instruction->base.base,
buf_sprintf("RHS of shift is too large for LHS type"));
@ -16910,7 +16938,7 @@ static IrInstGen *ir_analyze_bit_shift(IrAnalyze *ira, IrInstSrcBinOp *bin_op_in
if (op2_val == nullptr)
return ira->codegen->invalid_inst_gen;
if (bigint_cmp_zero(&op2_val->data.x_bigint) == CmpEQ)
if (value_cmp_numeric_val_all(op2_val, CmpEQ, nullptr))
return ir_analyze_cast(ira, &bin_op_instruction->base.base, op1->value->type, op1);
}
@ -16923,7 +16951,7 @@ static IrInstGen *ir_analyze_bit_shift(IrAnalyze *ira, IrInstSrcBinOp *bin_op_in
if (op2_val == nullptr)
return ira->codegen->invalid_inst_gen;
return ir_analyze_math_op(ira, &bin_op_instruction->base.base, op1->value->type, op1_val, op_id, op2_val);
return ir_analyze_math_op(ira, &bin_op_instruction->base.base, op1_type, op1_val, op_id, op2_val);
}
return ir_build_bin_op_gen(ira, &bin_op_instruction->base.base, op1->value->type,
@ -16991,31 +17019,53 @@ static bool is_pointer_arithmetic_allowed(ZigType *lhs_type, IrBinOp op) {
zig_unreachable();
}
static bool value_cmp_zero_any(ZigValue *value, Cmp predicate) {
assert(value->special == ConstValSpecialStatic);
static bool value_cmp_numeric_val(ZigValue *left, Cmp predicate, ZigValue *right, bool any) {
assert(left->special == ConstValSpecialStatic);
assert(right == nullptr || right->special == ConstValSpecialStatic);
switch (value->type->id) {
switch (left->type->id) {
case ZigTypeIdComptimeInt:
case ZigTypeIdInt:
return bigint_cmp_zero(&value->data.x_bigint) == predicate;
case ZigTypeIdInt: {
const Cmp result = right ?
bigint_cmp(&left->data.x_bigint, &right->data.x_bigint) :
bigint_cmp_zero(&left->data.x_bigint);
return result == predicate;
}
case ZigTypeIdComptimeFloat:
case ZigTypeIdFloat:
if (float_is_nan(value))
case ZigTypeIdFloat: {
if (float_is_nan(left))
return false;
return float_cmp_zero(value) == predicate;
if (right != nullptr && float_is_nan(right))
return false;
const Cmp result = right ? float_cmp(left, right) : float_cmp_zero(left);
return result == predicate;
}
case ZigTypeIdVector: {
for (size_t i = 0; i < value->type->data.vector.len; i++) {
ZigValue *scalar_val = &value->data.x_array.data.s_none.elements[i];
if (!value_cmp_zero_any(scalar_val, predicate))
return true;
for (size_t i = 0; i < left->type->data.vector.len; i++) {
ZigValue *scalar_val = &left->data.x_array.data.s_none.elements[i];
const bool result = value_cmp_numeric_val(scalar_val, predicate, right, any);
if (any && result)
return true; // This element satisfies the predicate
else if (!any && !result)
return false; // This element doesn't satisfy the predicate
}
return false;
return any ? false : true;
}
default:
zig_unreachable();
}
}
static bool value_cmp_numeric_val_any(ZigValue *left, Cmp predicate, ZigValue *right) {
return value_cmp_numeric_val(left, predicate, right, true);
}
static bool value_cmp_numeric_val_all(ZigValue *left, Cmp predicate, ZigValue *right) {
return value_cmp_numeric_val(left, predicate, right, false);
}
static IrInstGen *ir_analyze_bin_op_math(IrAnalyze *ira, IrInstSrcBinOp *instruction) {
Error err;
@ -17165,8 +17215,8 @@ static IrInstGen *ir_analyze_bin_op_math(IrAnalyze *ira, IrInstSrcBinOp *instruc
return ira->codegen->invalid_inst_gen;
// Promote division with negative numbers to signed
bool is_signed_div = value_cmp_zero_any(op1_val, CmpLT) ||
value_cmp_zero_any(op2_val, CmpLT);
bool is_signed_div = value_cmp_numeric_val_any(op1_val, CmpLT, nullptr) ||
value_cmp_numeric_val_any(op2_val, CmpLT, nullptr);
if (op_id == IrBinOpDivUnspecified && is_int) {
// Default to truncating division and check if it's valid for the
@ -17176,7 +17226,7 @@ static IrInstGen *ir_analyze_bin_op_math(IrAnalyze *ira, IrInstSrcBinOp *instruc
if (is_signed_div) {
bool ok = false;
if (value_cmp_zero_any(op2_val, CmpEQ)) {
if (value_cmp_numeric_val_any(op2_val, CmpEQ, nullptr)) {
// the division by zero error will be caught later, but we don't have a
// division function ambiguity problem.
ok = true;
@ -17215,7 +17265,7 @@ static IrInstGen *ir_analyze_bin_op_math(IrAnalyze *ira, IrInstSrcBinOp *instruc
if (is_signed_div) {
bool ok = false;
if (value_cmp_zero_any(op2_val, CmpEQ)) {
if (value_cmp_numeric_val_any(op2_val, CmpEQ, nullptr)) {
// the division by zero error will be caught later, but we don't have a
// division function ambiguity problem.
ok = true;

View File

@ -1,5 +1,6 @@
const std = @import("std");
const mem = std.mem;
const math = std.math;
const expect = std.testing.expect;
const expectEqual = std.testing.expectEqual;
@ -376,3 +377,67 @@ test "vector bitwise not operator" {
S.doTheTest();
comptime S.doTheTest();
}
test "vector shift operators" {
const S = struct {
fn doTheTestShift(x: var, y: var) void {
const N = @typeInfo(@TypeOf(x)).Array.len;
const TX = @typeInfo(@TypeOf(x)).Array.child;
const TY = @typeInfo(@TypeOf(y)).Array.child;
var xv = @as(@Vector(N, TX), x);
var yv = @as(@Vector(N, TY), y);
var z0 = xv >> yv;
for (@as([N]TX, z0)) |v, i| {
expectEqual(x[i] >> y[i], v);
}
var z1 = xv << yv;
for (@as([N]TX, z1)) |v, i| {
expectEqual(x[i] << y[i], v);
}
}
fn doTheTestShiftExact(x: var, y: var, dir: enum { Left, Right }) void {
const N = @typeInfo(@TypeOf(x)).Array.len;
const TX = @typeInfo(@TypeOf(x)).Array.child;
const TY = @typeInfo(@TypeOf(y)).Array.child;
var xv = @as(@Vector(N, TX), x);
var yv = @as(@Vector(N, TY), y);
var z = if (dir == .Left) @shlExact(xv, yv) else @shrExact(xv, yv);
for (@as([N]TX, z)) |v, i| {
const check = if (dir == .Left) x[i] << y[i] else x[i] >> y[i];
expectEqual(check, v);
}
}
fn doTheTest() void {
doTheTestShift([_]u8{ 0, 2, 4, math.maxInt(u8) }, [_]u3{ 2, 0, 2, 7 });
doTheTestShift([_]u16{ 0, 2, 4, math.maxInt(u16) }, [_]u4{ 2, 0, 2, 15 });
doTheTestShift([_]u24{ 0, 2, 4, math.maxInt(u24) }, [_]u5{ 2, 0, 2, 23 });
doTheTestShift([_]u32{ 0, 2, 4, math.maxInt(u32) }, [_]u5{ 2, 0, 2, 31 });
doTheTestShift([_]u64{ 0xfe, math.maxInt(u64) }, [_]u6{ 0, 63 });
doTheTestShift([_]i8{ 0, 2, 4, math.maxInt(i8) }, [_]u3{ 2, 0, 2, 7 });
doTheTestShift([_]i16{ 0, 2, 4, math.maxInt(i16) }, [_]u4{ 2, 0, 2, 7 });
doTheTestShift([_]i24{ 0, 2, 4, math.maxInt(i24) }, [_]u5{ 2, 0, 2, 7 });
doTheTestShift([_]i32{ 0, 2, 4, math.maxInt(i32) }, [_]u5{ 2, 0, 2, 7 });
doTheTestShift([_]i64{ 0xfe, math.maxInt(i64) }, [_]u6{ 0, 63 });
doTheTestShiftExact([_]u8{ 0, 1, 1 << 7, math.maxInt(u8) ^ 1 }, [_]u3{ 4, 0, 7, 1 }, .Right);
doTheTestShiftExact([_]u16{ 0, 1, 1 << 15, math.maxInt(u16) ^ 1 }, [_]u4{ 4, 0, 15, 1 }, .Right);
doTheTestShiftExact([_]u24{ 0, 1, 1 << 23, math.maxInt(u24) ^ 1 }, [_]u5{ 4, 0, 23, 1 }, .Right);
doTheTestShiftExact([_]u32{ 0, 1, 1 << 31, math.maxInt(u32) ^ 1 }, [_]u5{ 4, 0, 31, 1 }, .Right);
doTheTestShiftExact([_]u64{ 1 << 63, 1 }, [_]u6{ 63, 0 }, .Right);
doTheTestShiftExact([_]u8{ 0, 1, 1, math.maxInt(u8) ^ (1 << 7) }, [_]u3{ 4, 0, 7, 1 }, .Left);
doTheTestShiftExact([_]u16{ 0, 1, 1, math.maxInt(u16) ^ (1 << 15) }, [_]u4{ 4, 0, 15, 1 }, .Left);
doTheTestShiftExact([_]u24{ 0, 1, 1, math.maxInt(u24) ^ (1 << 23) }, [_]u5{ 4, 0, 23, 1 }, .Left);
doTheTestShiftExact([_]u32{ 0, 1, 1, math.maxInt(u32) ^ (1 << 31) }, [_]u5{ 4, 0, 31, 1 }, .Left);
doTheTestShiftExact([_]u64{ 1 << 63, 1 }, [_]u6{ 0, 63 }, .Left);
}
};
S.doTheTest();
comptime S.doTheTest();
}