Merge pull request #4795 from LemonBoy/divtf3

Add __divtf3 to compiler-rt
This commit is contained in:
Andrew Kelley 2020-03-24 14:51:51 -04:00 committed by GitHub
commit cbaede7f55
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 295 additions and 9 deletions

View File

@ -61,24 +61,36 @@ pub const f16_toint = 1.0 / f16_epsilon;
pub const nan_u16 = @as(u16, 0x7C01);
pub const nan_f16 = @bitCast(f16, nan_u16);
pub const qnan_u16 = @as(u16, 0x7E00);
pub const qnan_f16 = @bitCast(f16, qnan_u16);
pub const inf_u16 = @as(u16, 0x7C00);
pub const inf_f16 = @bitCast(f16, inf_u16);
pub const nan_u32 = @as(u32, 0x7F800001);
pub const nan_f32 = @bitCast(f32, nan_u32);
pub const qnan_u32 = @as(u32, 0x7FC00000);
pub const qnan_f32 = @bitCast(f32, qnan_u32);
pub const inf_u32 = @as(u32, 0x7F800000);
pub const inf_f32 = @bitCast(f32, inf_u32);
pub const nan_u64 = @as(u64, 0x7FF << 52) | 1;
pub const nan_f64 = @bitCast(f64, nan_u64);
pub const qnan_u64 = @as(u64, 0x7ff8000000000000);
pub const qnan_f64 = @bitCast(f64, qnan_u64);
pub const inf_u64 = @as(u64, 0x7FF << 52);
pub const inf_f64 = @bitCast(f64, inf_u64);
pub const nan_u128 = @as(u128, 0x7fff0000000000000000000000000001);
pub const nan_f128 = @bitCast(f128, nan_u128);
pub const qnan_u128 = @as(u128, 0x7fff8000000000000000000000000000);
pub const qnan_f128 = @bitCast(f128, qnan_u128);
pub const inf_u128 = @as(u128, 0x7fff0000000000000000000000000000);
pub const inf_f128 = @bitCast(f128, inf_u128);
@ -670,13 +682,12 @@ fn testRem() void {
/// Returns the absolute value of the integer parameter.
/// Result is an unsigned integer.
pub fn absCast(x: var) switch(@typeInfo(@TypeOf(x))) {
.ComptimeInt => comptime_int,
.Int => |intInfo| std.meta.IntType(false, intInfo.bits),
else => @compileError("absCast only accepts integers"),
}
{
switch(@typeInfo(@TypeOf(x))) {
pub fn absCast(x: var) switch (@typeInfo(@TypeOf(x))) {
.ComptimeInt => comptime_int,
.Int => |intInfo| std.meta.IntType(false, intInfo.bits),
else => @compileError("absCast only accepts integers"),
} {
switch (@typeInfo(@TypeOf(x))) {
.ComptimeInt => {
if (x < 0) {
return -x;

View File

@ -67,6 +67,7 @@ comptime {
@export(@import("compiler_rt/divsf3.zig").__divsf3, .{ .name = "__divsf3", .linkage = linkage });
@export(@import("compiler_rt/divdf3.zig").__divdf3, .{ .name = "__divdf3", .linkage = linkage });
@export(@import("compiler_rt/divtf3.zig").__divtf3, .{ .name = "__divtf3", .linkage = linkage });
@export(@import("compiler_rt/ashlti3.zig").__ashlti3, .{ .name = "__ashlti3", .linkage = linkage });
@export(@import("compiler_rt/lshrti3.zig").__lshrti3, .{ .name = "__lshrti3", .linkage = linkage });

View File

@ -203,7 +203,7 @@ pub fn __divdf3(a: f64, b: f64) callconv(.C) f64 {
}
}
fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void {
pub fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void {
@setRuntimeSafety(builtin.is_test);
switch (Z) {
u32 => {
@ -312,7 +312,7 @@ fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void {
}
}
fn normalize(comptime T: type, significand: *std.meta.IntType(false, T.bit_count)) i32 {
pub fn normalize(comptime T: type, significand: *std.meta.IntType(false, T.bit_count)) i32 {
@setRuntimeSafety(builtin.is_test);
const Z = std.meta.IntType(false, T.bit_count);
const significandBits = std.math.floatMantissaBits(T);

View File

@ -0,0 +1,228 @@
const std = @import("std");
const builtin = @import("builtin");
const normalize = @import("divdf3.zig").normalize;
const wideMultiply = @import("divdf3.zig").wideMultiply;
pub fn __divtf3(a: f128, b: f128) callconv(.C) f128 {
@setRuntimeSafety(builtin.is_test);
const Z = std.meta.IntType(false, f128.bit_count);
const SignedZ = std.meta.IntType(true, f128.bit_count);
const typeWidth = f128.bit_count;
const significandBits = std.math.floatMantissaBits(f128);
const exponentBits = std.math.floatExponentBits(f128);
const signBit = (@as(Z, 1) << (significandBits + exponentBits));
const maxExponent = ((1 << exponentBits) - 1);
const exponentBias = (maxExponent >> 1);
const implicitBit = (@as(Z, 1) << significandBits);
const quietBit = implicitBit >> 1;
const significandMask = implicitBit - 1;
const absMask = signBit - 1;
const exponentMask = absMask ^ significandMask;
const qnanRep = exponentMask | quietBit;
const infRep = @bitCast(Z, std.math.inf(f128));
const aExponent = @truncate(u32, (@bitCast(Z, a) >> significandBits) & maxExponent);
const bExponent = @truncate(u32, (@bitCast(Z, b) >> significandBits) & maxExponent);
const quotientSign: Z = (@bitCast(Z, a) ^ @bitCast(Z, b)) & signBit;
var aSignificand: Z = @bitCast(Z, a) & significandMask;
var bSignificand: Z = @bitCast(Z, b) & significandMask;
var scale: i32 = 0;
// Detect if a or b is zero, denormal, infinity, or NaN.
if (aExponent -% 1 >= maxExponent -% 1 or bExponent -% 1 >= maxExponent -% 1) {
const aAbs: Z = @bitCast(Z, a) & absMask;
const bAbs: Z = @bitCast(Z, b) & absMask;
// NaN / anything = qNaN
if (aAbs > infRep) return @bitCast(f128, @bitCast(Z, a) | quietBit);
// anything / NaN = qNaN
if (bAbs > infRep) return @bitCast(f128, @bitCast(Z, b) | quietBit);
if (aAbs == infRep) {
// infinity / infinity = NaN
if (bAbs == infRep) {
return @bitCast(f128, qnanRep);
}
// infinity / anything else = +/- infinity
else {
return @bitCast(f128, aAbs | quotientSign);
}
}
// anything else / infinity = +/- 0
if (bAbs == infRep) return @bitCast(f128, quotientSign);
if (aAbs == 0) {
// zero / zero = NaN
if (bAbs == 0) {
return @bitCast(f128, qnanRep);
}
// zero / anything else = +/- zero
else {
return @bitCast(f128, quotientSign);
}
}
// anything else / zero = +/- infinity
if (bAbs == 0) return @bitCast(f128, infRep | quotientSign);
// one or both of a or b is denormal, the other (if applicable) is a
// normal number. Renormalize one or both of a and b, and set scale to
// include the necessary exponent adjustment.
if (aAbs < implicitBit) scale +%= normalize(f128, &aSignificand);
if (bAbs < implicitBit) scale -%= normalize(f128, &bSignificand);
}
// Set the implicit significand bit. If we fell through from the
// denormal path it was already set by normalize( ), but setting it twice
// won't hurt anything.
aSignificand |= implicitBit;
bSignificand |= implicitBit;
var quotientExponent: i32 = @bitCast(i32, aExponent -% bExponent) +% scale;
// Align the significand of b as a Q63 fixed-point number in the range
// [1, 2.0) and get a Q64 approximate reciprocal using a small minimax
// polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
// is accurate to about 3.5 binary digits.
const q63b = @truncate(u64, bSignificand >> 49);
var recip64 = @as(u64, 0x7504f333F9DE6484) -% q63b;
// 0x7504f333F9DE6484 / 2^64 + 1 = 3/4 + 1/sqrt(2)
// Now refine the reciprocal estimate using a Newton-Raphson iteration:
//
// x1 = x0 * (2 - x0 * b)
//
// This doubles the number of correct binary digits in the approximation
// with each iteration.
var correction64: u64 = undefined;
correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
// The reciprocal may have overflowed to zero if the upper half of b is
// exactly 1.0. This would sabatoge the full-width final stage of the
// computation that follows, so we adjust the reciprocal down by one bit.
recip64 -%= 1;
// We need to perform one more iteration to get us to 112 binary digits;
// The last iteration needs to happen with extra precision.
const q127blo: u64 = @truncate(u64, bSignificand << 15);
var correction: u128 = undefined;
var reciprocal: u128 = undefined;
// NOTE: This operation is equivalent to __multi3, which is not implemented
// in some architechure
var r64q63: u128 = undefined;
var r64q127: u128 = undefined;
var r64cH: u128 = undefined;
var r64cL: u128 = undefined;
var dummy: u128 = undefined;
wideMultiply(u128, recip64, q63b, &dummy, &r64q63);
wideMultiply(u128, recip64, q127blo, &dummy, &r64q127);
correction = -%(r64q63 + (r64q127 >> 64));
const cHi = @truncate(u64, correction >> 64);
const cLo = @truncate(u64, correction);
wideMultiply(u128, recip64, cHi, &dummy, &r64cH);
wideMultiply(u128, recip64, cLo, &dummy, &r64cL);
reciprocal = r64cH + (r64cL >> 64);
// Adjust the final 128-bit reciprocal estimate downward to ensure that it
// is strictly smaller than the infinitely precise exact reciprocal. Because
// the computation of the Newton-Raphson step is truncating at every step,
// this adjustment is small; most of the work is already done.
reciprocal -%= 2;
// The numerical reciprocal is accurate to within 2^-112, lies in the
// interval [0.5, 1.0), and is strictly smaller than the true reciprocal
// of b. Multiplying a by this reciprocal thus gives a numerical q = a/b
// in Q127 with the following properties:
//
// 1. q < a/b
// 2. q is in the interval [0.5, 2.0)
// 3. The error in q is bounded away from 2^-113 (actually, we have a
// couple of bits to spare, but this is all we need).
// We need a 128 x 128 multiply high to compute q.
var quotient: u128 = undefined;
var quotientLo: u128 = undefined;
wideMultiply(u128, aSignificand << 2, reciprocal, &quotient, &quotientLo);
// Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
// In either case, we are going to compute a residual of the form
//
// r = a - q*b
//
// We know from the construction of q that r satisfies:
//
// 0 <= r < ulp(q)*b
//
// If r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
// already have the correct result. The exact halfway case cannot occur.
// We also take this time to right shift quotient if it falls in the [1,2)
// range and adjust the exponent accordingly.
var residual: u128 = undefined;
var qb: u128 = undefined;
if (quotient < (implicitBit << 1)) {
wideMultiply(u128, quotient, bSignificand, &dummy, &qb);
residual = (aSignificand << 113) -% qb;
quotientExponent -%= 1;
} else {
quotient >>= 1;
wideMultiply(u128, quotient, bSignificand, &dummy, &qb);
residual = (aSignificand << 112) -% qb;
}
const writtenExponent = quotientExponent +% exponentBias;
if (writtenExponent >= maxExponent) {
// If we have overflowed the exponent, return infinity.
return @bitCast(f128, infRep | quotientSign);
} else if (writtenExponent < 1) {
if (writtenExponent == 0) {
// Check whether the rounded result is normal.
const round = @boolToInt((residual << 1) > bSignificand);
// Clear the implicit bit.
var absResult = quotient & significandMask;
// Round.
absResult += round;
if ((absResult & ~significandMask) > 0) {
// The rounded result is normal; return it.
return @bitCast(f128, absResult | quotientSign);
}
}
// Flush denormals to zero. In the future, it would be nice to add
// code to round them correctly.
return @bitCast(f128, quotientSign);
} else {
const round = @boolToInt((residual << 1) >= bSignificand);
// Clear the implicit bit
var absResult = quotient & significandMask;
// Insert the exponent
absResult |= @intCast(Z, writtenExponent) << significandBits;
// Round
absResult +%= round;
// Insert the sign and return
return @bitCast(f128, absResult | quotientSign);
}
}
test "import divtf3" {
_ = @import("divtf3_test.zig");
}

View File

@ -0,0 +1,46 @@
const std = @import("std");
const math = std.math;
const testing = std.testing;
const __divtf3 = @import("divtf3.zig").__divtf3;
fn compareResultLD(result: f128, expectedHi: u64, expectedLo: u64) bool {
const rep = @bitCast(u128, result);
const hi = @truncate(u64, rep >> 64);
const lo = @truncate(u64, rep);
if (hi == expectedHi and lo == expectedLo) {
return true;
}
// test other possible NaN representation(signal NaN)
else if (expectedHi == 0x7fff800000000000 and expectedLo == 0) {
if ((hi & 0x7fff000000000000) == 0x7fff000000000000 and
((hi & 0xffffffffffff) > 0 or lo > 0))
{
return true;
}
}
return false;
}
fn test__divtf3(a: f128, b: f128, expectedHi: u64, expectedLo: u64) void {
const x = __divtf3(a, b);
const ret = compareResultLD(x, expectedHi, expectedLo);
testing.expect(ret == true);
}
test "divtf3" {
// qNaN / any = qNaN
test__divtf3(math.qnan_f128, 0x1.23456789abcdefp+5, 0x7fff800000000000, 0);
// NaN / any = NaN
test__divtf3(math.nan_f128, 0x1.23456789abcdefp+5, 0x7fff800000000000, 0);
// inf / any = inf
test__divtf3(math.inf_f128, 0x1.23456789abcdefp+5, 0x7fff000000000000, 0);
test__divtf3(0x1.a23b45362464523375893ab4cdefp+5, 0x1.eedcbaba3a94546558237654321fp-1, 0x4004b0b72924d407, 0x0717e84356c6eba2);
test__divtf3(0x1.a2b34c56d745382f9abf2c3dfeffp-50, 0x1.ed2c3ba15935332532287654321fp-9, 0x3fd5b2af3f828c9b, 0x40e51f64cde8b1f2);
test__divtf3(0x1.2345f6aaaa786555f42432abcdefp+456, 0x1.edacbba9874f765463544dd3621fp+6400, 0x28c62e15dc464466, 0xb5a07586348557ac);
test__divtf3(0x1.2d3456f789ba6322bc665544edefp-234, 0x1.eddcdba39f3c8b7a36564354321fp-4455, 0x507b38442b539266, 0x22ce0f1d024e1252);
test__divtf3(0x1.2345f6b77b7a8953365433abcdefp+234, 0x1.edcba987d6bb3aa467754354321fp-4055, 0x50bf2e02f0798d36, 0x5e6fcb6b60044078);
test__divtf3(6.72420628622418701252535563464350521E-4932, 2.0, 0x0001000000000000, 0);
}