mirror of
https://github.com/ziglang/zig.git
synced 2026-02-14 13:30:45 +00:00
std.math: change gcd's implementation to use Stein's algorithm instead of Euclid's (#21077)
This commit is contained in:
parent
a08f8d44da
commit
b2c53eb0d7
@ -1,41 +1,50 @@
|
||||
//! Greatest common divisor (https://mathworld.wolfram.com/GreatestCommonDivisor.html)
|
||||
const std = @import("std");
|
||||
const expectEqual = std.testing.expectEqual;
|
||||
|
||||
/// Returns the greatest common divisor (GCD) of two unsigned integers (a and b) which are not both zero.
|
||||
/// For example, the GCD of 8 and 12 is 4, that is, gcd(8, 12) == 4.
|
||||
/// Returns the greatest common divisor (GCD) of two unsigned integers (`a` and `b`) which are not both zero.
|
||||
/// For example, the GCD of `8` and `12` is `4`, that is, `gcd(8, 12) == 4`.
|
||||
pub fn gcd(a: anytype, b: anytype) @TypeOf(a, b) {
|
||||
|
||||
// only unsigned integers are allowed and not both must be zero
|
||||
comptime switch (@typeInfo(@TypeOf(a, b))) {
|
||||
.int => |int| std.debug.assert(int.signedness == .unsigned),
|
||||
.comptime_int => {
|
||||
std.debug.assert(a >= 0);
|
||||
std.debug.assert(b >= 0);
|
||||
},
|
||||
else => unreachable,
|
||||
const N = switch (@TypeOf(a, b)) {
|
||||
// convert comptime_int to some sized int type for @ctz
|
||||
comptime_int => std.math.IntFittingRange(@min(a, b), @max(a, b)),
|
||||
else => |T| T,
|
||||
};
|
||||
if (@typeInfo(N) != .int or @typeInfo(N).int.signedness != .unsigned) {
|
||||
@compileError("`a` and `b` must be usigned integers");
|
||||
}
|
||||
|
||||
// using an optimised form of Stein's algorithm:
|
||||
// https://en.wikipedia.org/wiki/Binary_GCD_algorithm
|
||||
std.debug.assert(a != 0 or b != 0);
|
||||
|
||||
// if one of them is zero, the other is returned
|
||||
if (a == 0) return b;
|
||||
if (b == 0) return a;
|
||||
|
||||
// init vars
|
||||
var x: @TypeOf(a, b) = a;
|
||||
var y: @TypeOf(a, b) = b;
|
||||
var m: @TypeOf(a, b) = a;
|
||||
var x: N = a;
|
||||
var y: N = b;
|
||||
|
||||
// using the Euclidean algorithm (https://mathworld.wolfram.com/EuclideanAlgorithm.html)
|
||||
while (y != 0) {
|
||||
m = x % y;
|
||||
x = y;
|
||||
y = m;
|
||||
const xz = @ctz(x);
|
||||
const yz = @ctz(y);
|
||||
const shift = @min(xz, yz);
|
||||
x >>= @intCast(xz);
|
||||
y >>= @intCast(yz);
|
||||
|
||||
var diff = y -% x;
|
||||
while (diff != 0) : (diff = y -% x) {
|
||||
// ctz is invariant under negation, we
|
||||
// put it here to ease data dependencies,
|
||||
// makes the CPU happy.
|
||||
const zeros = @ctz(diff);
|
||||
if (x > y) diff = -%diff;
|
||||
y = @min(x, y);
|
||||
x = diff >> @intCast(zeros);
|
||||
}
|
||||
return x;
|
||||
return y << @intCast(shift);
|
||||
}
|
||||
|
||||
test "gcd" {
|
||||
test gcd {
|
||||
const expectEqual = std.testing.expectEqual;
|
||||
|
||||
try expectEqual(gcd(0, 5), 5);
|
||||
try expectEqual(gcd(5, 0), 5);
|
||||
try expectEqual(gcd(8, 12), 4);
|
||||
@ -45,4 +54,6 @@ test "gcd" {
|
||||
try expectEqual(gcd(49865, 69811), 9973);
|
||||
try expectEqual(gcd(300_000, 2_300_000), 100_000);
|
||||
try expectEqual(gcd(90000000_000_000_000_000_000, 2), 2);
|
||||
try expectEqual(gcd(@as(u80, 90000000_000_000_000_000_000), 2), 2);
|
||||
try expectEqual(gcd(300_000, @as(u32, 2_300_000)), 100_000);
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user