compiler_rt: Fix rounding/NaN handling for f80 add/sub

There were a few minor bugs in the rounding behavior and Inf/NaN
handling for the f80 __addxf3 and __subtf3 functions.

This change updates the original generic implementation to correctly
handle f80 floats, including the explicit integer bit.
This commit is contained in:
Cody Tapscott 2022-04-18 20:23:02 -07:00
parent d760cae2b1
commit b2950866b1
2 changed files with 108 additions and 193 deletions

View File

@ -3,6 +3,7 @@
// https://github.com/llvm/llvm-project/blob/02d85149a05cb1f6dc49f0ba7a2ceca53718ae17/compiler-rt/lib/builtins/fp_add_impl.inc
const std = @import("std");
const math = std.math;
const builtin = @import("builtin");
const compiler_rt = @import("../compiler_rt.zig");
@ -14,6 +15,16 @@ pub fn __adddf3(a: f64, b: f64) callconv(.C) f64 {
return addXf3(f64, a, b);
}
pub fn __addxf3(a: f80, b: f80) callconv(.C) f80 {
return addXf3(f80, a, b);
}
pub fn __subxf3(a: f80, b: f80) callconv(.C) f80 {
var b_rep = std.math.break_f80(b);
b_rep.exp ^= 0x8000;
return __addxf3(a, std.math.make_f80(b_rep));
}
pub fn __addtf3(a: f128, b: f128) callconv(.C) f128 {
return addXf3(f128, a, b);
}
@ -58,10 +69,10 @@ fn normalize(comptime T: type, significand: *std.meta.Int(.unsigned, @typeInfo(T
const bits = @typeInfo(T).Float.bits;
const Z = std.meta.Int(.unsigned, bits);
const S = std.meta.Int(.unsigned, bits - @clz(Z, @as(Z, bits) - 1));
const significandBits = std.math.floatMantissaBits(T);
const implicitBit = @as(Z, 1) << significandBits;
const fractionalBits = math.floatFractionalBits(T);
const integerBit = @as(Z, 1) << fractionalBits;
const shift = @clz(std.meta.Int(.unsigned, bits), significand.*) - @clz(Z, implicitBit);
const shift = @clz(std.meta.Int(.unsigned, bits), significand.*) - @clz(Z, integerBit);
significand.* <<= @intCast(S, shift);
return 1 - shift;
}
@ -73,26 +84,26 @@ fn addXf3(comptime T: type, a: T, b: T) T {
const S = std.meta.Int(.unsigned, bits - @clz(Z, @as(Z, bits) - 1));
const typeWidth = bits;
const significandBits = std.math.floatMantissaBits(T);
const exponentBits = std.math.floatExponentBits(T);
const significandBits = math.floatMantissaBits(T);
const fractionalBits = math.floatFractionalBits(T);
const exponentBits = math.floatExponentBits(T);
const signBit = (@as(Z, 1) << (significandBits + exponentBits));
const maxExponent = ((1 << exponentBits) - 1);
const implicitBit = (@as(Z, 1) << significandBits);
const quietBit = implicitBit >> 1;
const significandMask = implicitBit - 1;
const integerBit = (@as(Z, 1) << fractionalBits);
const quietBit = integerBit >> 1;
const significandMask = (@as(Z, 1) << significandBits) - 1;
const absMask = signBit - 1;
const exponentMask = absMask ^ significandMask;
const qnanRep = exponentMask | quietBit;
const qnanRep = @bitCast(Z, math.nan(T)) | quietBit;
var aRep = @bitCast(Z, a);
var bRep = @bitCast(Z, b);
const aAbs = aRep & absMask;
const bAbs = bRep & absMask;
const infRep = @bitCast(Z, std.math.inf(T));
const infRep = @bitCast(Z, math.inf(T));
// Detect if a or b is zero, infinity, or NaN.
if (aAbs -% @as(Z, 1) >= infRep - @as(Z, 1) or
@ -157,12 +168,12 @@ fn addXf3(comptime T: type, a: T, b: T) T {
// implicit significand bit. (If we fell through from the denormal path it
// was already set by normalize( ), but setting it twice won't hurt
// anything.)
aSignificand = (aSignificand | implicitBit) << 3;
bSignificand = (bSignificand | implicitBit) << 3;
aSignificand = (aSignificand | integerBit) << 3;
bSignificand = (bSignificand | integerBit) << 3;
// Shift the significand of b by the difference in exponents, with a sticky
// bottom bit to get rounding correct.
const @"align" = @intCast(Z, aExponent - bExponent);
const @"align" = @intCast(u32, aExponent - bExponent);
if (@"align" != 0) {
if (@"align" < typeWidth) {
const sticky = if (bSignificand << @intCast(S, typeWidth - @"align") != 0) @as(Z, 1) else 0;
@ -178,8 +189,8 @@ fn addXf3(comptime T: type, a: T, b: T) T {
// If partial cancellation occured, we need to left-shift the result
// and adjust the exponent:
if (aSignificand < implicitBit << 3) {
const shift = @intCast(i32, @clz(Z, aSignificand)) - @intCast(i32, @clz(std.meta.Int(.unsigned, bits), implicitBit << 3));
if (aSignificand < integerBit << 3) {
const shift = @intCast(i32, @clz(Z, aSignificand)) - @intCast(i32, @clz(std.meta.Int(.unsigned, bits), integerBit << 3));
aSignificand <<= @intCast(S, shift);
aExponent -= shift;
}
@ -188,7 +199,7 @@ fn addXf3(comptime T: type, a: T, b: T) T {
// If the addition carried up, we need to right-shift the result and
// adjust the exponent:
if (aSignificand & (implicitBit << 4) != 0) {
if (aSignificand & (integerBit << 4) != 0) {
const sticky = aSignificand & 1;
aSignificand = aSignificand >> 1 | sticky;
aExponent += 1;
@ -210,7 +221,7 @@ fn addXf3(comptime T: type, a: T, b: T) T {
// Low three bits are round, guard, and sticky.
const roundGuardSticky = aSignificand & 0x7;
// Shift the significand into place, and mask off the implicit bit.
// Shift the significand into place, and mask off the integer bit, if it's implicit.
var result = (aSignificand >> 3) & significandMask;
// Insert the exponent and sign.
@ -222,180 +233,14 @@ fn addXf3(comptime T: type, a: T, b: T) T {
if (roundGuardSticky > 0x4) result += 1;
if (roundGuardSticky == 0x4) result += result & 1;
// Restore any explicit integer bit, if it was rounded off
if (significandBits != fractionalBits) {
if ((result >> significandBits) != 0) result |= integerBit;
}
return @bitCast(T, result);
}
fn normalize_f80(exp: *i32, significand: *u80) void {
const shift = @clz(u64, @truncate(u64, significand.*));
significand.* = (significand.* << shift);
exp.* += -@as(i8, shift);
}
pub fn __addxf3(a: f80, b: f80) callconv(.C) f80 {
var a_rep = std.math.break_f80(a);
var b_rep = std.math.break_f80(b);
var a_exp: i32 = a_rep.exp & 0x7FFF;
var b_exp: i32 = b_rep.exp & 0x7FFF;
const significand_bits = std.math.floatMantissaBits(f80);
const int_bit = 0x8000000000000000;
const significand_mask = 0x7FFFFFFFFFFFFFFF;
const qnan_bit = 0xC000000000000000;
const max_exp = 0x7FFF;
const sign_bit = 0x8000;
// Detect if a or b is infinity, or NaN.
if (a_exp == max_exp) {
if (a_rep.fraction ^ int_bit == 0) {
if (b_exp == max_exp and (b_rep.fraction ^ int_bit == 0)) {
// +/-infinity + -/+infinity = qNaN
return std.math.qnan_f80;
}
// +/-infinity + anything = +/- infinity
return a;
} else {
std.debug.assert(a_rep.fraction & significand_mask != 0);
// NaN + anything = qNaN
a_rep.fraction |= qnan_bit;
return std.math.make_f80(a_rep);
}
}
if (b_exp == max_exp) {
if (b_rep.fraction ^ int_bit == 0) {
// anything + +/-infinity = +/-infinity
return b;
} else {
std.debug.assert(b_rep.fraction & significand_mask != 0);
// anything + NaN = qNaN
b_rep.fraction |= qnan_bit;
return std.math.make_f80(b_rep);
}
}
const a_zero = (a_rep.fraction | @bitCast(u32, a_exp)) == 0;
const b_zero = (b_rep.fraction | @bitCast(u32, b_exp)) == 0;
if (a_zero) {
// zero + anything = anything
if (b_zero) {
// but we need to get the sign right for zero + zero
a_rep.exp &= b_rep.exp;
return std.math.make_f80(a_rep);
} else {
return b;
}
} else if (b_zero) {
// anything + zero = anything
return a;
}
var a_int: u80 = a_rep.fraction | (@as(u80, a_rep.exp & max_exp) << significand_bits);
var b_int: u80 = b_rep.fraction | (@as(u80, b_rep.exp & max_exp) << significand_bits);
// Swap a and b if necessary so that a has the larger absolute value.
if (b_int > a_int) {
const temp = a_rep;
a_rep = b_rep;
b_rep = temp;
}
// Extract the exponent and significand from the (possibly swapped) a and b.
a_exp = a_rep.exp & max_exp;
b_exp = b_rep.exp & max_exp;
a_int = a_rep.fraction;
b_int = b_rep.fraction;
// Normalize any denormals, and adjust the exponent accordingly.
normalize_f80(&a_exp, &a_int);
normalize_f80(&b_exp, &b_int);
// The sign of the result is the sign of the larger operand, a. If they
// have opposite signs, we are performing a subtraction; otherwise addition.
const result_sign = a_rep.exp & sign_bit;
const subtraction = (a_rep.exp ^ b_rep.exp) & sign_bit != 0;
// Shift the significands to give us round, guard and sticky, and or in the
// implicit significand bit. (If we fell through from the denormal path it
// was already set by normalize( ), but setting it twice won't hurt
// anything.)
a_int = a_int << 3;
b_int = b_int << 3;
// Shift the significand of b by the difference in exponents, with a sticky
// bottom bit to get rounding correct.
const @"align" = @intCast(u80, a_exp - b_exp);
if (@"align" != 0) {
if (@"align" < 80) {
const sticky = if (b_int << @intCast(u7, 80 - @"align") != 0) @as(u80, 1) else 0;
b_int = (b_int >> @truncate(u7, @"align")) | sticky;
} else {
b_int = 1; // sticky; b is known to be non-zero.
}
}
if (subtraction) {
a_int -= b_int;
// If a == -b, return +zero.
if (a_int == 0) return 0.0;
// If partial cancellation occurred, we need to left-shift the result
// and adjust the exponent:
if (a_int < int_bit << 3) {
const shift = @intCast(i32, @clz(u80, a_int)) - @intCast(i32, @clz(u80, @as(u80, int_bit) << 3));
a_int <<= @intCast(u7, shift);
a_exp -= shift;
}
} else { // addition
a_int += b_int;
// If the addition carried up, we need to right-shift the result and
// adjust the exponent:
if (a_int & (int_bit << 4) != 0) {
const sticky = a_int & 1;
a_int = a_int >> 1 | sticky;
a_exp += 1;
}
}
// If we have overflowed the type, return +/- infinity:
if (a_exp >= max_exp) {
a_rep.exp = max_exp | result_sign;
a_rep.fraction = int_bit; // integer bit is set for +/-inf
return std.math.make_f80(a_rep);
}
if (a_exp <= 0) {
// Result is denormal before rounding; the exponent is zero and we
// need to shift the significand.
const shift = @intCast(u80, 1 - a_exp);
const sticky = if (a_int << @intCast(u7, 80 - shift) != 0) @as(u1, 1) else 0;
a_int = a_int >> @intCast(u7, shift | sticky);
a_exp = 0;
}
// Low three bits are round, guard, and sticky.
const round_guard_sticky = @truncate(u3, a_int);
// Shift the significand into place.
a_int = @truncate(u64, a_int >> 3);
// // Insert the exponent and sign.
a_int |= (@intCast(u80, a_exp) | result_sign) << significand_bits;
// Final rounding. The result may overflow to infinity, but that is the
// correct result in that case.
if (round_guard_sticky > 0x4) a_int += 1;
if (round_guard_sticky == 0x4) a_int += a_int & 1;
a_rep.fraction = @truncate(u64, a_int);
a_rep.exp = @truncate(u16, a_int >> significand_bits);
return std.math.make_f80(a_rep);
}
pub fn __subxf3(a: f80, b: f80) callconv(.C) f80 {
var b_rep = std.math.break_f80(b);
b_rep.exp ^= 0x8000;
return __addxf3(a, std.math.make_f80(b_rep));
}
test {
_ = @import("addXf3_test.zig");
}

View File

@ -3,8 +3,9 @@
// https://github.com/llvm/llvm-project/blob/02d85149a05cb1f6dc49f0ba7a2ceca53718ae17/compiler-rt/test/builtins/Unit/addtf3_test.c
// https://github.com/llvm/llvm-project/blob/02d85149a05cb1f6dc49f0ba7a2ceca53718ae17/compiler-rt/test/builtins/Unit/subtf3_test.c
const std = @import("std");
const math = std.math;
const qnan128 = @bitCast(f128, @as(u128, 0x7fff800000000000) << 64);
const inf128 = @bitCast(f128, @as(u128, 0x7fff000000000000) << 64);
const __addtf3 = @import("addXf3.zig").__addtf3;
@ -37,13 +38,14 @@ test "addtf3" {
try test__addtf3(@bitCast(f128, (@as(u128, 0x7fff000000000000) << 64) | @as(u128, 0x800030000000)), 0x1.23456789abcdefp+5, 0x7fff800000000000, 0x0);
// inf + inf = inf
try test__addtf3(inf128, inf128, 0x7fff000000000000, 0x0);
try test__addtf3(math.inf(f128), math.inf(f128), 0x7fff000000000000, 0x0);
// inf + any = inf
try test__addtf3(inf128, 0x1.2335653452436234723489432abcdefp+5, 0x7fff000000000000, 0x0);
try test__addtf3(math.inf(f128), 0x1.2335653452436234723489432abcdefp+5, 0x7fff000000000000, 0x0);
// any + any
try test__addtf3(0x1.23456734245345543849abcdefp+5, 0x1.edcba52449872455634654321fp-1, 0x40042afc95c8b579, 0x61e58dd6c51eb77c);
try test__addtf3(0x1.edcba52449872455634654321fp-1, 0x1.23456734245345543849abcdefp+5, 0x40042afc95c8b579, 0x61e58dd6c51eb77c);
}
const __subtf3 = @import("addXf3.zig").__subtf3;
@ -78,8 +80,76 @@ test "subtf3" {
try test__subtf3(@bitCast(f128, (@as(u128, 0x7fff000000000000) << 64) | @as(u128, 0x800030000000)), 0x1.23456789abcdefp+5, 0x7fff800000000000, 0x0);
// inf - any = inf
try test__subtf3(inf128, 0x1.23456789abcdefp+5, 0x7fff000000000000, 0x0);
try test__subtf3(math.inf(f128), 0x1.23456789abcdefp+5, 0x7fff000000000000, 0x0);
// any + any
try test__subtf3(0x1.234567829a3bcdef5678ade36734p+5, 0x1.ee9d7c52354a6936ab8d7654321fp-1, 0x40041b8af1915166, 0xa44a7bca780a166c);
try test__subtf3(0x1.ee9d7c52354a6936ab8d7654321fp-1, 0x1.234567829a3bcdef5678ade36734p+5, 0xc0041b8af1915166, 0xa44a7bca780a166c);
}
const __addxf3 = @import("addXf3.zig").__addxf3;
const qnan80 = @bitCast(f80, @bitCast(u80, math.nan(f80)) | (1 << (math.floatFractionalBits(f80) - 1)));
fn test__addxf3(a: f80, b: f80, expected: u80) !void {
const x = __addxf3(a, b);
const rep = @bitCast(u80, x);
if (rep == expected)
return;
if (math.isNan(@bitCast(f80, expected)) and math.isNan(x))
return; // We don't currently test NaN payload propagation
return error.TestFailed;
}
test "addxf3" {
// NaN + any = NaN
try test__addxf3(qnan80, 0x1.23456789abcdefp+5, @bitCast(u80, qnan80));
try test__addxf3(@bitCast(f80, @as(u80, 0x7fff_8000_8000_3000_0000)), 0x1.23456789abcdefp+5, @bitCast(u80, qnan80));
// any + NaN = NaN
try test__addxf3(0x1.23456789abcdefp+5, qnan80, @bitCast(u80, qnan80));
try test__addxf3(0x1.23456789abcdefp+5, @bitCast(f80, @as(u80, 0x7fff_8000_8000_3000_0000)), @bitCast(u80, qnan80));
// NaN + inf = NaN
try test__addxf3(qnan80, math.inf(f80), @bitCast(u80, qnan80));
// inf + NaN = NaN
try test__addxf3(math.inf(f80), qnan80, @bitCast(u80, qnan80));
// inf + inf = inf
try test__addxf3(math.inf(f80), math.inf(f80), @bitCast(u80, math.inf(f80)));
// inf + -inf = NaN
try test__addxf3(math.inf(f80), -math.inf(f80), @bitCast(u80, qnan80));
// -inf + inf = NaN
try test__addxf3(-math.inf(f80), math.inf(f80), @bitCast(u80, qnan80));
// inf + any = inf
try test__addxf3(math.inf(f80), 0x1.2335653452436234723489432abcdefp+5, @bitCast(u80, math.inf(f80)));
// any + inf = inf
try test__addxf3(0x1.2335653452436234723489432abcdefp+5, math.inf(f80), @bitCast(u80, math.inf(f80)));
// any + any
try test__addxf3(0x1.23456789abcdp+5, 0x1.dcba987654321p+5, 0x4005_BFFFFFFFFFFFC400);
try test__addxf3(0x1.23456734245345543849abcdefp+5, 0x1.edcba52449872455634654321fp-1, 0x4004_957E_4AE4_5ABC_B0F3);
try test__addxf3(0x1.ffff_ffff_ffff_fffcp+0, 0x1.0p-63, 0x3FFF_FFFFFFFFFFFFFFFF); // exact
try test__addxf3(0x1.ffff_ffff_ffff_fffep+0, 0x0.0p0, 0x3FFF_FFFFFFFFFFFFFFFF); // exact
try test__addxf3(0x1.ffff_ffff_ffff_fffcp+0, 0x1.4p-63, 0x3FFF_FFFFFFFFFFFFFFFF); // round down
try test__addxf3(0x1.ffff_ffff_ffff_fffcp+0, 0x1.8p-63, 0x4000_8000000000000000); // round up to even
try test__addxf3(0x1.ffff_ffff_ffff_fffcp+0, 0x1.cp-63, 0x4000_8000000000000000); // round up
try test__addxf3(0x1.ffff_ffff_ffff_fffcp+0, 0x2.0p-63, 0x4000_8000000000000000); // exact
try test__addxf3(0x1.ffff_ffff_ffff_fffcp+0, 0x2.1p-63, 0x4000_8000000000000000); // round down
try test__addxf3(0x1.ffff_ffff_ffff_fffcp+0, 0x3.0p-63, 0x4000_8000000000000000); // round down to even
try test__addxf3(0x1.ffff_ffff_ffff_fffcp+0, 0x3.1p-63, 0x4000_8000000000000001); // round up
try test__addxf3(0x1.ffff_ffff_ffff_fffcp+0, 0x4.0p-63, 0x4000_8000000000000001); // exact
try test__addxf3(0x1.0fff_ffff_ffff_fffep+0, 0x1.0p-63, 0x3FFF_8800000000000000); // exact
try test__addxf3(0x1.0fff_ffff_ffff_fffep+0, 0x1.7p-63, 0x3FFF_8800000000000000); // round down
try test__addxf3(0x1.0fff_ffff_ffff_fffep+0, 0x1.8p-63, 0x3FFF_8800000000000000); // round down to even
try test__addxf3(0x1.0fff_ffff_ffff_fffep+0, 0x1.9p-63, 0x3FFF_8800000000000001); // round up
try test__addxf3(0x1.0fff_ffff_ffff_fffep+0, 0x2.0p-63, 0x3FFF_8800000000000001); // exact
}