std.ArrayList: insertSlice avoids extra memcpy

Includes a more robust implementation of replaceRange, which updates the
ArrayListUnmanaged if state changes in the managed part of the code
before returning an error.

Co-authored-by: Andrew Kelley <andrew@ziglang.org>
This commit is contained in:
Lucas Santos 2023-09-27 21:20:34 -03:00 committed by Andrew Kelley
parent e919fbea9f
commit 9d765b5ab5

View File

@ -6,6 +6,21 @@ const mem = std.mem;
const math = std.math;
const Allocator = mem.Allocator;
/// Shared between managed and unmanaged versions of ArrayList. Called
/// when memory growth is necessary. Returns a capacity larger than minimum
/// that is better according to our growth policy.
fn computeBetterCapacity(
current_capacity: usize,
minimum_capacity: usize,
) usize {
var better_capacity = current_capacity;
while (true) {
better_capacity +|= better_capacity / 2 + 8;
if (better_capacity >= minimum_capacity)
return better_capacity;
}
}
/// A contiguous, growable list of items in memory.
/// This is a wrapper around an array of T values. Initialize with `init`.
///
@ -162,15 +177,92 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
self.items[n] = item;
}
/// Resize the array, adding `count` new elements at position `index`, which have `undefined` values.
/// The return value is a slice pointing to the newly allocated elements. The returned pointer
/// becomes invalid when the list is resized. Resizes list if self.capacity is not large enough.
pub fn addManyAtIndex(
self: *Self,
index: usize,
count: usize,
) Allocator.Error![]T {
const new_len = self.items.len + count;
const to_move = self.items[index..];
if (self.capacity >= new_len) {
//There is enough space
self.items.len = new_len;
mem.copyBackwards(
T,
self.items[index + count ..],
to_move,
);
const result = self.items[index..][0..count];
@memset(result, undefined);
return result;
} else {
const better_capacity = computeBetterCapacity(self.capacity, new_len);
// Here we avoid copying allocated but unused bytes by
// attempting a resize in place, and falling back to allocating
// a new buffer and doing our own copy. With a realloc() call,
// the allocator implementation would pointlessly copy our
// extra capacity.
const old_memory = self.allocatedSlice();
if (self.allocator.resize(old_memory, better_capacity)) {
self.capacity = better_capacity;
self.items.len = new_len;
mem.copyBackwards(
T,
self.items[index + count ..],
to_move,
);
const result = self.items[index..][0..count];
@memset(result, undefined);
return result;
} else {
// Need a new allocation. We don't call ensureTotalCapacity because there
// would be an unnecessary check if the capacity is enough (we already
// know it's not).
const new_memory = try self.allocator.alignedAlloc(
T,
alignment,
better_capacity,
);
@memcpy(
new_memory[0..index],
self.items[0..index],
);
// No need to mem.copyBackwards, as this is a new allocation.
@memcpy(
new_memory[index + count ..][0..to_move.len],
to_move,
);
self.allocator.free(old_memory);
self.items.ptr = new_memory.ptr;
self.items.len = new_len;
self.capacity = new_memory.len;
const result = new_memory[index..][0..count];
@memset(result, undefined);
return result;
}
}
}
/// Insert slice `items` at index `i` by moving `list[i .. list.len]` to make room.
/// This operation is O(N).
/// Invalidates pointers if additional memory is needed.
pub fn insertSlice(self: *Self, i: usize, items: []const T) Allocator.Error!void {
try self.ensureUnusedCapacity(items.len);
self.items.len += items.len;
mem.copyBackwards(T, self.items[i + items.len .. self.items.len], self.items[i .. self.items.len - items.len]);
@memcpy(self.items[i..][0..items.len], items);
pub fn insertSlice(
self: *Self,
index: usize,
items: []const T,
) Allocator.Error!void {
const dst = try self.addManyAtIndex(
index,
items.len,
);
@memcpy(dst, items);
}
/// Replace range of elements `list[start..][0..len]` with `new_items`.
@ -370,12 +462,7 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
if (self.capacity >= new_capacity) return;
var better_capacity = self.capacity;
while (true) {
better_capacity +|= better_capacity / 2 + 8;
if (better_capacity >= new_capacity) break;
}
const better_capacity = computeBetterCapacity(self.capacity, new_capacity);
return self.ensureTotalCapacityPrecise(better_capacity);
}
@ -663,16 +750,35 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
self.items[n] = item;
}
/// Insert slice `items` at index `i`. Moves `list[i .. list.len]` to
/// higher indicices make room.
/// Resize the array, adding `count` new elements at position `index`, which have `undefined` values.
/// The return value is a slice pointing to the newly allocated elements. The returned pointer
/// becomes invalid when the list is resized. Resizes list if self.capacity is not large enough.
pub fn addManyAtIndex(
self: *Self,
allocator: Allocator,
index: usize,
count: usize,
) Allocator.Error![]T {
var managed = self.toManaged(allocator);
defer self.* = managed.moveToUnmanaged();
return managed.addManyAtIndex(index, count);
}
/// Insert slice `items` at index `i` by moving `list[i .. list.len]` to make room.
/// This operation is O(N).
/// Invalidates pointers if additional memory is needed.
pub fn insertSlice(self: *Self, allocator: Allocator, i: usize, items: []const T) Allocator.Error!void {
try self.ensureUnusedCapacity(allocator, items.len);
self.items.len += items.len;
mem.copyBackwards(T, self.items[i + items.len .. self.items.len], self.items[i .. self.items.len - items.len]);
@memcpy(self.items[i..][0..items.len], items);
pub fn insertSlice(
self: *Self,
allocator: Allocator,
index: usize,
items: []const T,
) Allocator.Error!void {
const dst = try self.addManyAtIndex(
allocator,
index,
items.len,
);
@memcpy(dst, items);
}
/// Replace range of elements `list[start..][0..len]` with `new_items`
@ -681,8 +787,8 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
/// Invalidates pointers if this ArrayList is resized.
pub fn replaceRange(self: *Self, allocator: Allocator, start: usize, len: usize, new_items: []const T) Allocator.Error!void {
var managed = self.toManaged(allocator);
defer self.* = managed.moveToUnmanaged();
try managed.replaceRange(start, len, new_items);
self.* = managed.moveToUnmanaged();
}
/// Extend the list by 1 element. Allocates more memory as necessary.
@ -875,12 +981,7 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
pub fn ensureTotalCapacity(self: *Self, allocator: Allocator, new_capacity: usize) Allocator.Error!void {
if (self.capacity >= new_capacity) return;
var better_capacity = self.capacity;
while (true) {
better_capacity +|= better_capacity / 2 + 8;
if (better_capacity >= new_capacity) break;
}
var better_capacity = computeBetterCapacity(self.capacity, new_capacity);
return self.ensureTotalCapacityPrecise(allocator, better_capacity);
}
@ -1650,6 +1751,40 @@ test "std.ArrayList/ArrayListUnmanaged.addManyAsArray" {
}
}
test "std.ArrayList/ArrayListUnmanaged growing memory preserves contents" {
const a = std.testing.allocator;
{
var list = ArrayList(u8).init(a);
defer list.deinit();
try list.ensureTotalCapacityPrecise(1);
(try list.addManyAsArray(4)).* = "abcd".*;
try list.ensureTotalCapacityPrecise(4);
try list.appendSlice("efgh");
try testing.expectEqualSlices(u8, list.items, "abcdefgh");
try list.ensureTotalCapacityPrecise(8);
try list.insertSlice(4, "ijkl");
try testing.expectEqualSlices(u8, list.items, "abcdijklefgh");
}
{
var list = ArrayListUnmanaged(u8){};
try list.ensureTotalCapacityPrecise(a, 1);
defer list.deinit(a);
(try list.addManyAsArray(a, 4)).* = "abcd".*;
try list.ensureTotalCapacityPrecise(a, 4);
try list.appendSlice(a, "efgh");
try testing.expectEqualSlices(u8, list.items, "abcdefgh");
try list.ensureTotalCapacityPrecise(a, 8);
try list.insertSlice(a, 4, "ijkl");
try testing.expectEqualSlices(u8, list.items, "abcdijklefgh");
}
}
test "std.ArrayList/ArrayList.fromOwnedSliceSentinel" {
const a = testing.allocator;