mirror of
https://github.com/ziglang/zig.git
synced 2026-01-20 14:25:16 +00:00
stage2: fix comptime bitcast involving f80
* Sema: implement comptime bitcast of f80 with integer-like types bitwise rather than taking a round trip through memory layout. * Type: introduce `isAbiInt`. * Value: comptime memory write of f80 writes 0 bytes for padding instead of leaving the memory uninitialized. * Value: floatReadFromMemory has a more general implementation, checking the endianness rather than checking for specific architectures. This fixes behavior test failures occurring on MIPS.
This commit is contained in:
parent
35e7011124
commit
92bc3cbe27
@ -9,14 +9,14 @@ inline fn mantissaOne(comptime T: type) comptime_int {
|
||||
|
||||
/// Creates floating point type T from an unbiased exponent and raw mantissa.
|
||||
inline fn reconstructFloat(comptime T: type, exponent: comptime_int, mantissa: comptime_int) T {
|
||||
const TBits = std.meta.Int(.unsigned, @bitSizeOf(T));
|
||||
const TBits = @Type(.{ .Int = .{ .signedness = .unsigned, .bits = @bitSizeOf(T) } });
|
||||
const biased_exponent = @as(TBits, exponent + floatExponentMax(T));
|
||||
return @bitCast(T, (biased_exponent << floatMantissaBits(T)) | @as(TBits, mantissa));
|
||||
}
|
||||
|
||||
/// Returns the number of bits in the exponent of floating point type T.
|
||||
pub inline fn floatExponentBits(comptime T: type) comptime_int {
|
||||
assert(@typeInfo(T) == .Float);
|
||||
comptime assert(@typeInfo(T) == .Float);
|
||||
|
||||
return switch (@typeInfo(T).Float.bits) {
|
||||
16 => 5,
|
||||
@ -30,7 +30,7 @@ pub inline fn floatExponentBits(comptime T: type) comptime_int {
|
||||
|
||||
/// Returns the number of bits in the mantissa of floating point type T.
|
||||
pub inline fn floatMantissaBits(comptime T: type) comptime_int {
|
||||
assert(@typeInfo(T) == .Float);
|
||||
comptime assert(@typeInfo(T) == .Float);
|
||||
|
||||
return switch (@typeInfo(T).Float.bits) {
|
||||
16 => 10,
|
||||
@ -44,7 +44,7 @@ pub inline fn floatMantissaBits(comptime T: type) comptime_int {
|
||||
|
||||
/// Returns the number of fractional bits in the mantissa of floating point type T.
|
||||
pub inline fn floatFractionalBits(comptime T: type) comptime_int {
|
||||
assert(@typeInfo(T) == .Float);
|
||||
comptime assert(@typeInfo(T) == .Float);
|
||||
|
||||
// standard IEEE floats have an implicit 0.m or 1.m integer part
|
||||
// f80 is special and has an explicitly stored bit in the MSB
|
||||
@ -97,7 +97,7 @@ pub inline fn inf(comptime T: type) T {
|
||||
return reconstructFloat(T, floatExponentMax(T) + 1, mantissaOne(T));
|
||||
}
|
||||
|
||||
test "std.math.float" {
|
||||
test "float bits" {
|
||||
inline for ([_]type{ f16, f32, f64, f80, f128, c_longdouble }) |T| {
|
||||
// (1 +) for the sign bit, since it is separate from the other bits
|
||||
const size = 1 + floatExponentBits(T) + floatMantissaBits(T);
|
||||
|
||||
42
src/Sema.zig
42
src/Sema.zig
@ -22571,6 +22571,48 @@ fn bitCastVal(
|
||||
const target = sema.mod.getTarget();
|
||||
if (old_ty.eql(new_ty, sema.mod)) return val;
|
||||
|
||||
// Some conversions have a bitwise definition that ignores in-memory layout,
|
||||
// such as converting between f80 and u80.
|
||||
|
||||
if (old_ty.eql(Type.f80, sema.mod) and new_ty.isAbiInt()) {
|
||||
const float = val.toFloat(f80);
|
||||
switch (new_ty.intInfo(target).signedness) {
|
||||
.signed => {
|
||||
const int = @bitCast(i80, float);
|
||||
const limbs = try sema.arena.alloc(std.math.big.Limb, 2);
|
||||
const big_int = std.math.big.int.Mutable.init(limbs, int);
|
||||
return Value.fromBigInt(sema.arena, big_int.toConst());
|
||||
},
|
||||
.unsigned => {
|
||||
const int = @bitCast(u80, float);
|
||||
const limbs = try sema.arena.alloc(std.math.big.Limb, 2);
|
||||
const big_int = std.math.big.int.Mutable.init(limbs, int);
|
||||
return Value.fromBigInt(sema.arena, big_int.toConst());
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
if (new_ty.eql(Type.f80, sema.mod) and old_ty.isAbiInt()) {
|
||||
var bigint_space: Value.BigIntSpace = undefined;
|
||||
var bigint = try val.toBigIntAdvanced(&bigint_space, target, sema.kit(block, src));
|
||||
switch (old_ty.intInfo(target).signedness) {
|
||||
.signed => {
|
||||
// This conversion cannot fail because we already checked bit size before
|
||||
// calling bitCastVal.
|
||||
const int = bigint.to(i80) catch unreachable;
|
||||
const float = @bitCast(f80, int);
|
||||
return Value.Tag.float_80.create(sema.arena, float);
|
||||
},
|
||||
.unsigned => {
|
||||
// This conversion cannot fail because we already checked bit size before
|
||||
// calling bitCastVal.
|
||||
const int = bigint.to(u80) catch unreachable;
|
||||
const float = @bitCast(f80, int);
|
||||
return Value.Tag.float_80.create(sema.arena, float);
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
// For types with well-defined memory layouts, we serialize them a byte buffer,
|
||||
// then deserialize to the new type.
|
||||
const abi_size = try sema.usizeCast(block, src, old_ty.abiSize(target));
|
||||
|
||||
10
src/type.zig
10
src/type.zig
@ -4439,6 +4439,16 @@ pub const Type = extern union {
|
||||
};
|
||||
}
|
||||
|
||||
/// Returns true for integers, enums, error sets, and packed structs.
|
||||
/// If this function returns true, then intInfo() can be called on the type.
|
||||
pub fn isAbiInt(ty: Type) bool {
|
||||
return switch (ty.zigTypeTag()) {
|
||||
.Int, .Enum, .ErrorSet => true,
|
||||
.Struct => ty.containerLayout() == .Packed,
|
||||
else => false,
|
||||
};
|
||||
}
|
||||
|
||||
/// Asserts the type is an integer, enum, error set, or vector of one of them.
|
||||
pub fn intInfo(self: Type, target: Target) struct { signedness: std.builtin.Signedness, bits: u16 } {
|
||||
var ty = self;
|
||||
|
||||
@ -1468,8 +1468,7 @@ pub const Value = extern union {
|
||||
const repr = std.math.break_f80(f);
|
||||
std.mem.writeInt(u64, buffer[0..8], repr.fraction, endian);
|
||||
std.mem.writeInt(u16, buffer[8..10], repr.exp, endian);
|
||||
// TODO set the rest of the bytes to undefined. should we use 0xaa
|
||||
// or is there a different way?
|
||||
std.mem.set(u8, buffer[10..], 0);
|
||||
return;
|
||||
}
|
||||
const Int = @Type(.{ .Int = .{
|
||||
@ -1481,20 +1480,18 @@ pub const Value = extern union {
|
||||
}
|
||||
|
||||
fn floatReadFromMemory(comptime F: type, target: Target, buffer: []const u8) F {
|
||||
const endian = target.cpu.arch.endian();
|
||||
if (F == f80) {
|
||||
switch (target.cpu.arch) {
|
||||
.i386, .x86_64 => return std.math.make_f80(.{
|
||||
.fraction = std.mem.readIntLittle(u64, buffer[0..8]),
|
||||
.exp = std.mem.readIntLittle(u16, buffer[8..10]),
|
||||
}),
|
||||
else => {},
|
||||
}
|
||||
return std.math.make_f80(.{
|
||||
.fraction = readInt(u64, buffer[0..8], endian),
|
||||
.exp = readInt(u16, buffer[8..10], endian),
|
||||
});
|
||||
}
|
||||
const Int = @Type(.{ .Int = .{
|
||||
.signedness = .unsigned,
|
||||
.bits = @typeInfo(F).Float.bits,
|
||||
} });
|
||||
const int = readInt(Int, buffer[0..@sizeOf(Int)], target.cpu.arch.endian());
|
||||
const int = readInt(Int, buffer[0..@sizeOf(Int)], endian);
|
||||
return @bitCast(F, int);
|
||||
}
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user