compiler_rt: cmpxchg-based atomic fetch/exchange for small types

Some architectures (AMDGPU) do not support atomic exchange/fetch for
small types (for AMDGPU: 8- and 16-bit ints). For these types
atomic fetch and atomic exchange needs to be implemeted using atomic
operations on a wider type using cmpxchg.
This commit is contained in:
Robin Voetter 2022-09-18 15:27:20 +02:00
parent 8894d1c45e
commit 9006cd9d09
No known key found for this signature in database
GPG Key ID: E755662F227CB468

View File

@ -35,6 +35,17 @@ const largest_atomic_size = switch (arch) {
else => @sizeOf(usize),
};
// The size (in bytes) of the smallest atomic object that the architecture can
// perform fetch/exchange atomically. Note, this does not encompass load and store.
// Objects smaller than this threshold are implemented in terms of compare-exchange
// of a larger value.
const smallest_atomic_fetch_exch_size = switch (arch) {
// On AMDGPU, there are no instructions for atomic operations other than load and store
// (as of LLVM 15), and so these need to be implemented in terms of atomic CAS.
.amdgcn => @sizeOf(u32),
else => @sizeOf(u8),
};
const cache_line_size = 64;
const SpinlockTable = struct {
@ -214,6 +225,31 @@ inline fn atomic_exchange_N(comptime T: type, ptr: *T, val: T, model: i32) T {
const value = ptr.*;
ptr.* = val;
return value;
} else if (@sizeOf(T) < smallest_atomic_fetch_exch_size) {
// Machine does not support this type, but it does support a larger type.
const WideAtomic = std.meta.Int(.unsigned, smallest_atomic_fetch_exch_size * 8);
const addr = @ptrToInt(ptr);
const wide_addr = addr & ~(@as(T, smallest_atomic_fetch_exch_size) - 1);
const wide_ptr = @alignCast(smallest_atomic_fetch_exch_size, @intToPtr(*WideAtomic, wide_addr));
const inner_offset = addr & (@as(T, smallest_atomic_fetch_exch_size) - 1);
const inner_shift = @intCast(std.math.Log2Int(T), inner_offset * 8);
// Put the interesting bits at the right position (branch has dynamic RHS).
const shifted_value = @as(WideAtomic, val) << inner_shift;
// Mask that guards the bits we care about
const mask = @as(WideAtomic, std.math.maxInt(T)) << inner_shift;
while (true) {
const wide_old = @atomicLoad(WideAtomic, wide_ptr, .Acquire);
// Insert new bytes in old value.
const wide_new = wide_old & ~mask | shifted_value;
// CAS the new value until the result stabilizes.
if (@cmpxchgWeak(WideAtomic, wide_ptr, wide_old, wide_new, .SeqCst, .SeqCst) == null) {
// Mask-and-Shift back the old bits to get the old value.
return @truncate(T, (wide_old & mask) >> inner_shift);
}
}
} else {
return @atomicRmw(T, ptr, .Xchg, val, .SeqCst);
}
@ -298,6 +334,38 @@ inline fn fetch_op_N(comptime T: type, comptime op: std.builtin.AtomicRmwOp, ptr
};
return value;
} else if (@sizeOf(T) < smallest_atomic_fetch_exch_size) {
// Machine does not support this type, but it does support a larger type.
const WideAtomic = std.meta.Int(.unsigned, smallest_atomic_fetch_exch_size * 8);
const addr = @ptrToInt(ptr);
const wide_addr = addr & ~(@as(T, smallest_atomic_fetch_exch_size) - 1);
const wide_ptr = @alignCast(smallest_atomic_fetch_exch_size, @intToPtr(*WideAtomic, wide_addr));
const inner_offset = addr & (@as(T, smallest_atomic_fetch_exch_size) - 1);
const inner_shift = @intCast(std.math.Log2Int(T), inner_offset * 8);
const mask = @as(WideAtomic, std.math.maxInt(T)) << inner_shift;
while (true) {
// Compute new wide value with updated bits.
const wide_old = @atomicLoad(WideAtomic, wide_ptr, .Acquire);
const old = @truncate(T, (wide_old & mask) >> inner_shift);
const new = switch (op) {
.Add => old +% val,
.Sub => old -% val,
.And => old & val,
.Nand => ~(old & val),
.Or => old | val,
.Xor => old ^ val,
else => @compileError("unsupported atomic op"),
};
const wide_new = wide_old & ~mask | (@as(WideAtomic, new) << inner_shift);
// CAS the new value until the result stabilizes.
if (@cmpxchgWeak(WideAtomic, wide_ptr, wide_old, wide_new, .SeqCst, .SeqCst) == null) {
return old;
}
}
}
return @atomicRmw(T, ptr, op, val, .SeqCst);