IR: implement compileVar builtin and more

* implicit array to slice cast
 * fix if statements at global scope
 * implement array type IR
This commit is contained in:
Andrew Kelley 2016-11-19 01:39:51 -05:00
parent 19037014e5
commit 8a81f8aa13
7 changed files with 357 additions and 416 deletions

View File

@ -1451,6 +1451,7 @@ enum IrInstructionId {
IrInstructionIdArrayType,
IrInstructionIdSliceType,
IrInstructionIdAsm,
IrInstructionIdCompileVar,
};
struct IrInstruction {
@ -1735,6 +1736,12 @@ struct IrInstructionAsm {
bool has_side_effects;
};
struct IrInstructionCompileVar {
IrInstruction base;
IrInstruction *name;
};
enum LValPurpose {
LValPurposeNone,
LValPurposeAssign,

View File

@ -869,12 +869,9 @@ static IrInstruction *analyze_const_value(CodeGen *g, BlockContext *scope, AstNo
return result;
}
static TypeTableEntry *analyze_type_expr_pointer_only(CodeGen *g, ImportTableEntry *import,
BlockContext *context, AstNode *node, bool pointer_only)
static TypeTableEntry *analyze_type_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context,
AstNode *node)
{
if (pointer_only)
zig_panic("TODO");
IrInstruction *result = analyze_const_value(g, context, node, g->builtin_types.entry_type);
if (result->type_entry->id == TypeTableEntryIdInvalid)
return g->builtin_types.entry_invalid;
@ -883,13 +880,6 @@ static TypeTableEntry *analyze_type_expr_pointer_only(CodeGen *g, ImportTableEnt
return result->static_value.data.x_type;
}
// Calls analyze_expression on node, and then resolve_type.
static TypeTableEntry *analyze_type_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context,
AstNode *node)
{
return analyze_type_expr_pointer_only(g, import, context, node, false);
}
static bool fn_wants_full_static_eval(FnTableEntry *fn_table_entry) {
assert(fn_table_entry);
AstNodeFnProto *fn_proto = &fn_table_entry->proto_node->data.fn_proto;

View File

@ -696,7 +696,7 @@ static void render_node_extra(AstRender *ar, AstNode *node, bool grouped) {
fprintf(ar->f, ") ");
render_node_grouped(ar, node->data.if_bool_expr.then_block);
if (node->data.if_bool_expr.else_node) {
fprintf(ar->f, "else ");
fprintf(ar->f, " else ");
render_node_grouped(ar, node->data.if_bool_expr.else_node);
}
break;

View File

@ -526,240 +526,6 @@ static LLVMValueRef gen_overflow_op(CodeGen *g, TypeTableEntry *type_entry, AddS
return result;
}
static LLVMValueRef gen_overflow_shl_op(CodeGen *g, TypeTableEntry *type_entry,
LLVMValueRef val1, LLVMValueRef val2)
{
// for unsigned left shifting, we do the wrapping shift, then logically shift
// right the same number of bits
// if the values don't match, we have an overflow
// for signed left shifting we do the same except arithmetic shift right
assert(type_entry->id == TypeTableEntryIdInt);
LLVMValueRef result = LLVMBuildShl(g->builder, val1, val2, "");
LLVMValueRef orig_val;
if (type_entry->data.integral.is_signed) {
orig_val = LLVMBuildAShr(g->builder, result, val2, "");
} else {
orig_val = LLVMBuildLShr(g->builder, result, val2, "");
}
LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, val1, orig_val, "");
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn->fn_value, "OverflowOk");
LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn->fn_value, "OverflowFail");
LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block);
LLVMPositionBuilderAtEnd(g->builder, fail_block);
gen_debug_safety_crash(g);
LLVMPositionBuilderAtEnd(g->builder, ok_block);
return result;
}
static LLVMValueRef gen_div(CodeGen *g, AstNode *source_node, LLVMValueRef val1, LLVMValueRef val2,
TypeTableEntry *type_entry, bool exact)
{
if (want_debug_safety(g, source_node)) {
LLVMValueRef zero = LLVMConstNull(type_entry->type_ref);
LLVMValueRef is_zero_bit;
if (type_entry->id == TypeTableEntryIdInt) {
is_zero_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, val2, zero, "");
} else if (type_entry->id == TypeTableEntryIdFloat) {
is_zero_bit = LLVMBuildFCmp(g->builder, LLVMRealOEQ, val2, zero, "");
} else {
zig_unreachable();
}
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn->fn_value, "DivZeroOk");
LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn->fn_value, "DivZeroFail");
LLVMBuildCondBr(g->builder, is_zero_bit, fail_block, ok_block);
LLVMPositionBuilderAtEnd(g->builder, fail_block);
gen_debug_safety_crash(g);
LLVMPositionBuilderAtEnd(g->builder, ok_block);
}
if (type_entry->id == TypeTableEntryIdFloat) {
assert(!exact);
return LLVMBuildFDiv(g->builder, val1, val2, "");
}
assert(type_entry->id == TypeTableEntryIdInt);
if (exact) {
if (want_debug_safety(g, source_node)) {
LLVMValueRef remainder_val;
if (type_entry->data.integral.is_signed) {
remainder_val = LLVMBuildSRem(g->builder, val1, val2, "");
} else {
remainder_val = LLVMBuildURem(g->builder, val1, val2, "");
}
LLVMValueRef zero = LLVMConstNull(type_entry->type_ref);
LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, remainder_val, zero, "");
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn->fn_value, "DivExactOk");
LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn->fn_value, "DivExactFail");
LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block);
LLVMPositionBuilderAtEnd(g->builder, fail_block);
gen_debug_safety_crash(g);
LLVMPositionBuilderAtEnd(g->builder, ok_block);
}
if (type_entry->data.integral.is_signed) {
return LLVMBuildExactSDiv(g->builder, val1, val2, "");
} else {
return ZigLLVMBuildExactUDiv(g->builder, val1, val2, "");
}
} else {
if (type_entry->data.integral.is_signed) {
return LLVMBuildSDiv(g->builder, val1, val2, "");
} else {
return LLVMBuildUDiv(g->builder, val1, val2, "");
}
}
}
static LLVMValueRef gen_arithmetic_bin_op(CodeGen *g, AstNode *source_node,
LLVMValueRef val1, LLVMValueRef val2,
TypeTableEntry *op1_type, TypeTableEntry *op2_type,
BinOpType bin_op)
{
assert(op1_type == op2_type);
switch (bin_op) {
case BinOpTypeBinOr:
case BinOpTypeAssignBitOr:
return LLVMBuildOr(g->builder, val1, val2, "");
case BinOpTypeBinXor:
case BinOpTypeAssignBitXor:
return LLVMBuildXor(g->builder, val1, val2, "");
case BinOpTypeBinAnd:
case BinOpTypeAssignBitAnd:
return LLVMBuildAnd(g->builder, val1, val2, "");
case BinOpTypeBitShiftLeft:
case BinOpTypeBitShiftLeftWrap:
case BinOpTypeAssignBitShiftLeft:
case BinOpTypeAssignBitShiftLeftWrap:
{
assert(op1_type->id == TypeTableEntryIdInt);
bool is_wrapping = (bin_op == BinOpTypeBitShiftLeftWrap) ||
(bin_op == BinOpTypeAssignBitShiftLeftWrap);
if (is_wrapping) {
return LLVMBuildShl(g->builder, val1, val2, "");
} else if (want_debug_safety(g, source_node)) {
return gen_overflow_shl_op(g, op1_type, val1, val2);
} else if (op1_type->data.integral.is_signed) {
return ZigLLVMBuildNSWShl(g->builder, val1, val2, "");
} else {
return ZigLLVMBuildNUWShl(g->builder, val1, val2, "");
}
}
case BinOpTypeBitShiftRight:
case BinOpTypeAssignBitShiftRight:
assert(op1_type->id == TypeTableEntryIdInt);
assert(op2_type->id == TypeTableEntryIdInt);
if (op1_type->data.integral.is_signed) {
return LLVMBuildAShr(g->builder, val1, val2, "");
} else {
return LLVMBuildLShr(g->builder, val1, val2, "");
}
case BinOpTypeAdd:
case BinOpTypeAddWrap:
case BinOpTypeAssignPlus:
case BinOpTypeAssignPlusWrap:
if (op1_type->id == TypeTableEntryIdFloat) {
return LLVMBuildFAdd(g->builder, val1, val2, "");
} else if (op1_type->id == TypeTableEntryIdInt) {
bool is_wrapping = (bin_op == BinOpTypeAddWrap) || (bin_op == BinOpTypeAssignPlusWrap);
if (is_wrapping) {
return LLVMBuildAdd(g->builder, val1, val2, "");
} else if (want_debug_safety(g, source_node)) {
return gen_overflow_op(g, op1_type, AddSubMulAdd, val1, val2);
} else if (op1_type->data.integral.is_signed) {
return LLVMBuildNSWAdd(g->builder, val1, val2, "");
} else {
return LLVMBuildNUWAdd(g->builder, val1, val2, "");
}
} else {
zig_unreachable();
}
case BinOpTypeSub:
case BinOpTypeSubWrap:
case BinOpTypeAssignMinus:
case BinOpTypeAssignMinusWrap:
if (op1_type->id == TypeTableEntryIdFloat) {
return LLVMBuildFSub(g->builder, val1, val2, "");
} else if (op1_type->id == TypeTableEntryIdInt) {
bool is_wrapping = (bin_op == BinOpTypeSubWrap || bin_op == BinOpTypeAssignMinusWrap);
if (is_wrapping) {
return LLVMBuildSub(g->builder, val1, val2, "");
} else if (want_debug_safety(g, source_node)) {
return gen_overflow_op(g, op1_type, AddSubMulSub, val1, val2);
} else if (op1_type->data.integral.is_signed) {
return LLVMBuildNSWSub(g->builder, val1, val2, "");
} else {
return LLVMBuildNUWSub(g->builder, val1, val2, "");
}
} else {
zig_unreachable();
}
case BinOpTypeMult:
case BinOpTypeMultWrap:
case BinOpTypeAssignTimes:
case BinOpTypeAssignTimesWrap:
if (op1_type->id == TypeTableEntryIdFloat) {
return LLVMBuildFMul(g->builder, val1, val2, "");
} else if (op1_type->id == TypeTableEntryIdInt) {
bool is_wrapping = (bin_op == BinOpTypeMultWrap || bin_op == BinOpTypeAssignTimesWrap);
if (is_wrapping) {
return LLVMBuildMul(g->builder, val1, val2, "");
} else if (want_debug_safety(g, source_node)) {
return gen_overflow_op(g, op1_type, AddSubMulMul, val1, val2);
} else if (op1_type->data.integral.is_signed) {
return LLVMBuildNSWMul(g->builder, val1, val2, "");
} else {
return LLVMBuildNUWMul(g->builder, val1, val2, "");
}
} else {
zig_unreachable();
}
case BinOpTypeDiv:
case BinOpTypeAssignDiv:
return gen_div(g, source_node, val1, val2, op1_type, false);
case BinOpTypeMod:
case BinOpTypeAssignMod:
if (op1_type->id == TypeTableEntryIdFloat) {
return LLVMBuildFRem(g->builder, val1, val2, "");
} else {
assert(op1_type->id == TypeTableEntryIdInt);
if (op1_type->data.integral.is_signed) {
return LLVMBuildSRem(g->builder, val1, val2, "");
} else {
return LLVMBuildURem(g->builder, val1, val2, "");
}
}
case BinOpTypeBoolOr:
case BinOpTypeBoolAnd:
case BinOpTypeCmpEq:
case BinOpTypeCmpNotEq:
case BinOpTypeCmpLessThan:
case BinOpTypeCmpGreaterThan:
case BinOpTypeCmpLessOrEq:
case BinOpTypeCmpGreaterOrEq:
case BinOpTypeInvalid:
case BinOpTypeAssign:
case BinOpTypeAssignBoolAnd:
case BinOpTypeAssignBoolOr:
case BinOpTypeUnwrapMaybe:
case BinOpTypeArrayCat:
case BinOpTypeArrayMult:
zig_unreachable();
}
zig_unreachable();
}
static LLVMIntPredicate cmp_op_to_int_predicate(IrBinOp cmp_op, bool is_signed) {
switch (cmp_op) {
case IrBinOpCmpEq:
@ -825,7 +591,7 @@ static LLVMValueRef gen_struct_memcpy(CodeGen *g, LLVMValueRef src, LLVMValueRef
return LLVMBuildCall(g->builder, g->memcpy_fn_val, params, 5, "");
}
static LLVMValueRef gen_assign_raw(CodeGen *g, AstNode *source_node, BinOpType bin_op,
static LLVMValueRef gen_assign_raw(CodeGen *g, AstNode *source_node,
LLVMValueRef target_ref, LLVMValueRef value,
TypeTableEntry *op1_type, TypeTableEntry *op2_type)
{
@ -834,18 +600,10 @@ static LLVMValueRef gen_assign_raw(CodeGen *g, AstNode *source_node, BinOpType b
}
if (handle_is_ptr(op1_type)) {
assert(op1_type == op2_type);
assert(bin_op == BinOpTypeAssign);
return gen_struct_memcpy(g, value, target_ref, op1_type);
}
if (bin_op != BinOpTypeAssign) {
assert(source_node->type == NodeTypeBinOpExpr);
LLVMValueRef left_value = LLVMBuildLoad(g->builder, target_ref, "");
value = gen_arithmetic_bin_op(g, source_node, left_value, value, op1_type, op2_type, bin_op);
}
LLVMBuildStore(g->builder, value, target_ref);
return nullptr;
}
@ -1036,7 +794,7 @@ static LLVMValueRef ir_render_cast(CodeGen *g, IrExecutable *executable,
return expr_val;
} else {
LLVMValueRef val_ptr = LLVMBuildStructGEP(g->builder, cast_instruction->tmp_ptr, 0, "");
gen_assign_raw(g, cast_instruction->base.source_node, BinOpTypeAssign,
gen_assign_raw(g, cast_instruction->base.source_node,
val_ptr, expr_val, child_type, actual_type);
LLVMValueRef maybe_ptr = LLVMBuildStructGEP(g->builder, cast_instruction->tmp_ptr, 1, "");
@ -1065,7 +823,7 @@ static LLVMValueRef ir_render_cast(CodeGen *g, IrExecutable *executable,
LLVMBuildStore(g->builder, ok_err_val, err_tag_ptr);
LLVMValueRef payload_ptr = LLVMBuildStructGEP(g->builder, cast_instruction->tmp_ptr, 1, "");
gen_assign_raw(g, cast_instruction->base.source_node, BinOpTypeAssign,
gen_assign_raw(g, cast_instruction->base.source_node,
payload_ptr, expr_val, child_type, actual_type);
return cast_instruction->tmp_ptr;
@ -1414,7 +1172,7 @@ static LLVMValueRef ir_render_decl_var(CodeGen *g, IrExecutable *executable,
want_zeroes = true;
if (have_init_expr) {
gen_assign_raw(g, init_value->source_node, BinOpTypeAssign, var->value_ref,
gen_assign_raw(g, init_value->source_node, var->value_ref,
ir_llvm_value(g, init_value), var->type, init_value->type_entry);
} else {
bool ignore_uninit = false;
@ -1685,6 +1443,7 @@ static LLVMValueRef ir_render_instruction(CodeGen *g, IrExecutable *executable,
case IrInstructionIdSetDebugSafety:
case IrInstructionIdArrayType:
case IrInstructionIdSliceType:
case IrInstructionIdCompileVar:
zig_unreachable();
case IrInstructionIdReturn:
return ir_render_return(g, executable, (IrInstructionReturn *)instruction);

View File

@ -318,8 +318,23 @@ void eval_const_expr_implicit_cast(CastOp cast_op,
// can't do it
break;
case CastOpToUnknownSizeArray:
zig_panic("TODO compile time implicit to unknown size array");
break;
{
assert(other_type->id == TypeTableEntryIdArray);
assert(other_val->data.x_array.size == other_type->data.array.len);
const_val->data.x_struct.fields = allocate<ConstExprValue>(2);
ConstExprValue *ptr_field = &const_val->data.x_struct.fields[slice_ptr_index];
ConstExprValue *len_field = &const_val->data.x_struct.fields[slice_len_index];
ptr_field->special = ConstValSpecialStatic;
ptr_field->data.x_ptr.base_ptr = other_val;
len_field->special = ConstValSpecialStatic;
bignum_init_unsigned(&len_field->data.x_bignum, other_type->data.array.len);
const_val->special = ConstValSpecialStatic;
break;
}
case CastOpMaybeWrap:
const_val->data.x_maybe = other_val;
const_val->special = ConstValSpecialStatic;

View File

@ -218,6 +218,10 @@ static constexpr IrInstructionId ir_instruction_id(IrInstructionAsm *) {
return IrInstructionIdAsm;
}
static constexpr IrInstructionId ir_instruction_id(IrInstructionCompileVar *) {
return IrInstructionIdCompileVar;
}
template<typename T>
static T *ir_create_instruction(IrExecutable *exec, AstNode *source_node) {
T *special_instruction = allocate<T>(1);
@ -507,14 +511,6 @@ static IrInstruction *ir_build_field_ptr(IrBuilder *irb, AstNode *source_node,
return &instruction->base;
}
//static IrInstruction *ir_build_field_ptr_from(IrBuilder *irb, IrInstruction *old_instruction,
// IrInstruction *container_ptr, Buf *field_name)
//{
// IrInstruction *new_instruction = ir_build_field_ptr(irb, old_instruction->source_node, container_ptr, field_name);
// ir_link_new_instruction(new_instruction, old_instruction);
// return new_instruction;
//}
static IrInstruction *ir_build_read_field(IrBuilder *irb, AstNode *source_node,
IrInstruction *container_ptr, Buf *field_name)
{
@ -527,14 +523,6 @@ static IrInstruction *ir_build_read_field(IrBuilder *irb, AstNode *source_node,
return &instruction->base;
}
//static IrInstruction *ir_build_read_field_from(IrBuilder *irb, IrInstruction *old_instruction,
// IrInstruction *container_ptr, Buf *field_name)
//{
// IrInstruction *new_instruction = ir_build_read_field(irb, old_instruction->source_node, container_ptr, field_name);
// ir_link_new_instruction(new_instruction, old_instruction);
// return new_instruction;
//}
static IrInstruction *ir_build_struct_field_ptr(IrBuilder *irb, AstNode *source_node,
IrInstruction *struct_ptr, TypeStructField *field)
{
@ -861,6 +849,15 @@ static IrInstruction *ir_build_asm_from(IrBuilder *irb, IrInstruction *old_instr
return new_instruction;
}
static IrInstruction *ir_build_compile_var(IrBuilder *irb, AstNode *source_node, IrInstruction *name) {
IrInstructionCompileVar *instruction = ir_build_instruction<IrInstructionCompileVar>(irb, source_node);
instruction->name = name;
ir_ref_instruction(name);
return &instruction->base;
}
static void ir_gen_defers_for_block(IrBuilder *irb, BlockContext *inner_block, BlockContext *outer_block,
bool gen_error_defers, bool gen_maybe_defers)
{
@ -1336,6 +1333,15 @@ static IrInstruction *ir_gen_builtin_fn_call(IrBuilder *irb, AstNode *node) {
return ir_build_set_debug_safety(irb, node, arg0_value, arg1_value);
}
case BuiltinFnIdCompileVar:
{
AstNode *arg0_node = node->data.fn_call_expr.params.at(0);
IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, node->block_context);
if (arg0_value == irb->codegen->invalid_instruction)
return arg0_value;
return ir_build_compile_var(irb, node, arg0_value);
}
case BuiltinFnIdMemcpy:
case BuiltinFnIdMemset:
case BuiltinFnIdSizeof:
@ -1350,7 +1356,6 @@ static IrInstruction *ir_gen_builtin_fn_call(IrBuilder *irb, AstNode *node) {
case BuiltinFnIdCInclude:
case BuiltinFnIdCDefine:
case BuiltinFnIdCUndef:
case BuiltinFnIdCompileVar:
case BuiltinFnIdCompileErr:
case BuiltinFnIdConstEval:
case BuiltinFnIdCtz:
@ -1410,14 +1415,15 @@ static IrInstruction *ir_gen_if_bool_expr(IrBuilder *irb, AstNode *node) {
IrBasicBlock *else_block = ir_build_basic_block(irb, "Else");
IrBasicBlock *endif_block = ir_build_basic_block(irb, "EndIf");
ir_build_cond_br(irb, condition->source_node, condition, then_block, else_block, false);
bool is_inline = (node->block_context->fn_entry == nullptr);
ir_build_cond_br(irb, condition->source_node, condition, then_block, else_block, is_inline);
ir_set_cursor_at_end(irb, then_block);
IrInstruction *then_expr_result = ir_gen_node(irb, then_node, node->block_context);
if (then_expr_result == irb->codegen->invalid_instruction)
return then_expr_result;
IrBasicBlock *after_then_block = irb->current_basic_block;
ir_build_br(irb, node, endif_block, false);
ir_build_br(irb, node, endif_block, is_inline);
ir_set_cursor_at_end(irb, else_block);
IrInstruction *else_expr_result;
@ -1429,7 +1435,7 @@ static IrInstruction *ir_gen_if_bool_expr(IrBuilder *irb, AstNode *node) {
else_expr_result = ir_build_const_void(irb, node);
}
IrBasicBlock *after_else_block = irb->current_basic_block;
ir_build_br(irb, node, endif_block, false);
ir_build_br(irb, node, endif_block, is_inline);
ir_set_cursor_at_end(irb, endif_block);
IrInstruction **incoming_values = allocate<IrInstruction *>(2);
@ -2281,7 +2287,19 @@ static TypeTableEntry *ir_analyze_const_usize(IrAnalyze *ira, IrInstruction *ins
return ira->codegen->builtin_types.entry_usize;
}
static TypeTableEntry *ir_resolve_type(IrAnalyze *ira, IrInstruction *type_value) {
static ConstExprValue *ir_resolve_const(IrAnalyze *ira, IrInstruction *value) {
if (value->static_value.special != ConstValSpecialStatic) {
add_node_error(ira->codegen, value->source_node,
buf_sprintf("unable to evaluate constant expression"));
return nullptr;
}
return &value->static_value;
}
static TypeTableEntry *ir_resolve_type_lval(IrAnalyze *ira, IrInstruction *type_value, LValPurpose lval) {
if (lval != LValPurposeNone)
zig_panic("TODO");
if (type_value == ira->codegen->invalid_instruction)
return ira->codegen->builtin_types.entry_invalid;
@ -2294,44 +2312,15 @@ static TypeTableEntry *ir_resolve_type(IrAnalyze *ira, IrInstruction *type_value
return ira->codegen->builtin_types.entry_invalid;
}
ConstExprValue *const_val = &type_value->static_value;
if (const_val->special == ConstValSpecialRuntime) {
add_node_error(ira->codegen, type_value->source_node,
buf_sprintf("unable to evaluate constant expression"));
ConstExprValue *const_val = ir_resolve_const(ira, type_value);
if (!const_val)
return ira->codegen->builtin_types.entry_invalid;
}
return const_val->data.x_type;
}
static ConstExprValue *ir_resolve_const(IrAnalyze *ira, IrInstruction *value) {
if (value->static_value.special != ConstValSpecialStatic) {
add_node_error(ira->codegen, value->source_node,
buf_sprintf("unable to evaluate constant expression"));
return nullptr;
}
return &value->static_value;
}
static bool ir_resolve_bool(IrAnalyze *ira, IrInstruction *bool_value, bool *out) {
if (bool_value == ira->codegen->invalid_instruction)
return false;
if (bool_value->type_entry->id == TypeTableEntryIdInvalid)
return false;
if (bool_value->type_entry->id != TypeTableEntryIdBool) {
add_node_error(ira->codegen, bool_value->source_node,
buf_sprintf("expected type 'bool', found '%s'", buf_ptr(&bool_value->type_entry->name)));
return false;
}
ConstExprValue *const_val = ir_resolve_const(ira, bool_value);
if (!const_val)
return false;
*out = const_val->data.x_bool;
return true;
static TypeTableEntry *ir_resolve_type(IrAnalyze *ira, IrInstruction *type_value) {
return ir_resolve_type_lval(ira, type_value, LValPurposeNone);
}
static FnTableEntry *ir_resolve_fn(IrAnalyze *ira, IrInstruction *fn_value) {
@ -2347,12 +2336,9 @@ static FnTableEntry *ir_resolve_fn(IrAnalyze *ira, IrInstruction *fn_value) {
return nullptr;
}
ConstExprValue *const_val = &fn_value->static_value;
if (const_val->special == ConstValSpecialRuntime) {
add_node_error(ira->codegen, fn_value->source_node,
buf_sprintf("unable to evaluate constant expression"));
ConstExprValue *const_val = ir_resolve_const(ira, fn_value);
if (!const_val)
return nullptr;
}
return const_val->data.x_fn;
}
@ -2654,6 +2640,69 @@ static IrInstruction *ir_get_casted_value(IrAnalyze *ira, IrInstruction *value,
zig_unreachable();
}
static bool ir_resolve_usize(IrAnalyze *ira, IrInstruction *value, uint64_t *out) {
if (value->type_entry->id == TypeTableEntryIdInvalid)
return false;
IrInstruction *casted_value = ir_get_casted_value(ira, value, ira->codegen->builtin_types.entry_usize);
if (casted_value->type_entry->id == TypeTableEntryIdInvalid)
return false;
ConstExprValue *const_val = ir_resolve_const(ira, casted_value);
if (!const_val)
return false;
*out = const_val->data.x_bignum.data.x_uint;
return true;
}
static bool ir_resolve_bool(IrAnalyze *ira, IrInstruction *value, bool *out) {
if (value->type_entry->id == TypeTableEntryIdInvalid)
return false;
IrInstruction *casted_value = ir_get_casted_value(ira, value, ira->codegen->builtin_types.entry_bool);
if (casted_value->type_entry->id == TypeTableEntryIdInvalid)
return false;
ConstExprValue *const_val = ir_resolve_const(ira, casted_value);
if (!const_val)
return false;
*out = const_val->data.x_bool;
return true;
}
static Buf *ir_resolve_str(IrAnalyze *ira, IrInstruction *value) {
if (value->type_entry->id == TypeTableEntryIdInvalid)
return nullptr;
TypeTableEntry *str_type = get_slice_type(ira->codegen, ira->codegen->builtin_types.entry_u8, true);
IrInstruction *casted_value = ir_get_casted_value(ira, value, str_type);
if (casted_value->type_entry->id == TypeTableEntryIdInvalid)
return nullptr;
ConstExprValue *const_val = ir_resolve_const(ira, casted_value);
if (!const_val)
return nullptr;
ConstExprValue *ptr_field = &const_val->data.x_struct.fields[slice_ptr_index];
ConstExprValue *len_field = &const_val->data.x_struct.fields[slice_len_index];
ConstExprValue *array_val = ptr_field->data.x_ptr.base_ptr;
assert(ptr_field->data.x_ptr.index != SIZE_MAX);
size_t len = len_field->data.x_bignum.data.x_uint;
Buf *result = buf_alloc();
buf_resize(result, len);
for (size_t i = 0; i < len; i += 1) {
size_t new_index = ptr_field->data.x_ptr.index + i;
ConstExprValue *char_val = &array_val->data.x_array.elements[new_index];
uint64_t big_c = char_val->data.x_bignum.data.x_uint;
assert(big_c <= UINT8_MAX);
uint8_t c = big_c;
buf_ptr(result)[i] = c;
}
return result;
}
static TypeTableEntry *ir_analyze_instruction_return(IrAnalyze *ira,
IrInstructionReturn *return_instruction)
{
@ -3528,29 +3577,33 @@ static TypeTableEntry *ir_analyze_instruction_br(IrAnalyze *ira, IrInstructionBr
}
static TypeTableEntry *ir_analyze_instruction_cond_br(IrAnalyze *ira, IrInstructionCondBr *cond_br_instruction) {
TypeTableEntry *bool_type = ira->codegen->builtin_types.entry_bool;
IrInstruction *condition = ir_get_casted_value(ira, cond_br_instruction->condition->other, bool_type);
if (condition == ira->codegen->invalid_instruction)
return ir_finish_anal(ira, ira->codegen->builtin_types.entry_unreachable);
IrInstruction *condition = cond_br_instruction->condition->other;
// TODO detect backward jumps
if (condition->static_value.special != ConstValSpecialRuntime) {
IrBasicBlock *old_dest_block = condition->static_value.data.x_bool ?
if (cond_br_instruction->is_inline || condition->static_value.special != ConstValSpecialRuntime) {
bool cond_is_true;
if (!ir_resolve_bool(ira, condition, &cond_is_true))
return ir_finish_anal(ira, ira->codegen->builtin_types.entry_unreachable);
IrBasicBlock *old_dest_block = cond_is_true ?
cond_br_instruction->then_block : cond_br_instruction->else_block;
if (cond_br_instruction->is_inline || old_dest_block->ref_count == 1) {
ir_inline_bb(ira, old_dest_block);
return ira->codegen->builtin_types.entry_unreachable;
}
} else if (cond_br_instruction->is_inline) {
add_node_error(ira->codegen, condition->source_node,
buf_sprintf("unable to evaluate constant expression"));
return ir_finish_anal(ira, ira->codegen->builtin_types.entry_unreachable);
}
TypeTableEntry *bool_type = ira->codegen->builtin_types.entry_bool;
IrInstruction *casted_condition = ir_get_casted_value(ira, condition, bool_type);
if (casted_condition == ira->codegen->invalid_instruction)
return ir_finish_anal(ira, ira->codegen->builtin_types.entry_unreachable);
IrBasicBlock *new_then_block = ir_get_new_bb(ira, cond_br_instruction->then_block);
IrBasicBlock *new_else_block = ir_get_new_bb(ira, cond_br_instruction->else_block);
ir_build_cond_br_from(&ira->new_irb, &cond_br_instruction->base, condition, new_then_block, new_else_block, false);
ir_build_cond_br_from(&ira->new_irb, &cond_br_instruction->base,
casted_condition, new_then_block, new_else_block, false);
return ir_finish_anal(ira, ira->codegen->builtin_types.entry_unreachable);
}
@ -4255,6 +4308,100 @@ static TypeTableEntry *ir_analyze_instruction_asm(IrAnalyze *ira, IrInstructionA
return return_type;
}
static TypeTableEntry *ir_analyze_instruction_array_type(IrAnalyze *ira,
IrInstructionArrayType *array_type_instruction)
{
IrInstruction *size_value = array_type_instruction->size->other;
uint64_t size;
if (!ir_resolve_usize(ira, size_value, &size))
return ira->codegen->builtin_types.entry_invalid;
IrInstruction *child_type_value = array_type_instruction->child_type->other;
TypeTableEntry *child_type = ir_resolve_type(ira, child_type_value);
TypeTableEntry *canon_child_type = get_underlying_type(child_type);
switch (canon_child_type->id) {
case TypeTableEntryIdTypeDecl:
zig_unreachable();
case TypeTableEntryIdInvalid:
return ira->codegen->builtin_types.entry_invalid;
case TypeTableEntryIdVar:
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdUndefLit:
case TypeTableEntryIdNullLit:
case TypeTableEntryIdBlock:
add_node_error(ira->codegen, array_type_instruction->base.source_node,
buf_sprintf("array of type '%s' not allowed", buf_ptr(&child_type->name)));
// TODO if this is a typedecl, add error note showing the declaration of the type decl
return ira->codegen->builtin_types.entry_invalid;
case TypeTableEntryIdMetaType:
case TypeTableEntryIdVoid:
case TypeTableEntryIdBool:
case TypeTableEntryIdInt:
case TypeTableEntryIdFloat:
case TypeTableEntryIdPointer:
case TypeTableEntryIdArray:
case TypeTableEntryIdStruct:
case TypeTableEntryIdNumLitFloat:
case TypeTableEntryIdNumLitInt:
case TypeTableEntryIdMaybe:
case TypeTableEntryIdErrorUnion:
case TypeTableEntryIdPureError:
case TypeTableEntryIdEnum:
case TypeTableEntryIdUnion:
case TypeTableEntryIdFn:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdGenericFn:
{
TypeTableEntry *result_type = get_array_type(ira->codegen, child_type, size);
bool depends_on_compile_var = child_type_value->static_value.depends_on_compile_var ||
size_value->static_value.depends_on_compile_var;
ConstExprValue *out_val = ir_build_const_from(ira, &array_type_instruction->base,
depends_on_compile_var);
out_val->data.x_type = result_type;
return ira->codegen->builtin_types.entry_type;
}
}
zig_unreachable();
}
static TypeTableEntry *ir_analyze_instruction_compile_var(IrAnalyze *ira,
IrInstructionCompileVar *compile_var_instruction)
{
IrInstruction *name_value = compile_var_instruction->name->other;
Buf *var_name = ir_resolve_str(ira, name_value);
if (!var_name)
return ira->codegen->builtin_types.entry_invalid;
ConstExprValue *out_val = ir_build_const_from(ira, &compile_var_instruction->base, true);
if (buf_eql_str(var_name, "is_big_endian")) {
out_val->data.x_bool = ira->codegen->is_big_endian;
return ira->codegen->builtin_types.entry_bool;
} else if (buf_eql_str(var_name, "is_release")) {
out_val->data.x_bool = ira->codegen->is_release_build;
return ira->codegen->builtin_types.entry_bool;
} else if (buf_eql_str(var_name, "is_test")) {
out_val->data.x_bool = ira->codegen->is_test_build;
return ira->codegen->builtin_types.entry_bool;
} else if (buf_eql_str(var_name, "os")) {
out_val->data.x_enum.tag = ira->codegen->target_os_index;
return ira->codegen->builtin_types.entry_os_enum;
} else if (buf_eql_str(var_name, "arch")) {
out_val->data.x_enum.tag = ira->codegen->target_arch_index;
return ira->codegen->builtin_types.entry_arch_enum;
} else if (buf_eql_str(var_name, "environ")) {
out_val->data.x_enum.tag = ira->codegen->target_environ_index;
return ira->codegen->builtin_types.entry_environ_enum;
} else if (buf_eql_str(var_name, "object_format")) {
out_val->data.x_enum.tag = ira->codegen->target_oformat_index;
return ira->codegen->builtin_types.entry_oformat_enum;
} else {
add_node_error(ira->codegen, name_value->source_node,
buf_sprintf("unrecognized compile variable: '%s'", buf_ptr(var_name)));
return ira->codegen->builtin_types.entry_invalid;
}
zig_unreachable();
}
static TypeTableEntry *ir_analyze_instruction_nocast(IrAnalyze *ira, IrInstruction *instruction) {
switch (instruction->id) {
case IrInstructionIdInvalid:
@ -4305,12 +4452,15 @@ static TypeTableEntry *ir_analyze_instruction_nocast(IrAnalyze *ira, IrInstructi
return ir_analyze_instruction_slice_type(ira, (IrInstructionSliceType *)instruction);
case IrInstructionIdAsm:
return ir_analyze_instruction_asm(ira, (IrInstructionAsm *)instruction);
case IrInstructionIdArrayType:
return ir_analyze_instruction_array_type(ira, (IrInstructionArrayType *)instruction);
case IrInstructionIdCompileVar:
return ir_analyze_instruction_compile_var(ira, (IrInstructionCompileVar *)instruction);
case IrInstructionIdSwitchBr:
case IrInstructionIdCast:
case IrInstructionIdContainerInitList:
case IrInstructionIdContainerInitFields:
case IrInstructionIdStructFieldPtr:
case IrInstructionIdArrayType:
zig_panic("TODO analyze more instructions");
}
zig_unreachable();
@ -4414,6 +4564,7 @@ bool ir_has_side_effects(IrInstruction *instruction) {
case IrInstructionIdStructFieldPtr:
case IrInstructionIdArrayType:
case IrInstructionIdSliceType:
case IrInstructionIdCompileVar:
return false;
case IrInstructionIdAsm:
{
@ -5180,43 +5331,6 @@ IrInstruction *ir_exec_const_result(IrExecutable *exec) {
// case BuiltinFnIdCUndef:
// zig_panic("TODO");
//
// case BuiltinFnIdCompileVar:
// {
// AstNode **str_node = node->data.fn_call_expr.params.at(0)->parent_field;
//
// Buf *var_name = resolve_const_expr_str(g, import, context, str_node);
// if (!var_name) {
// return g->builtin_types.entry_invalid;
// }
//
// ConstExprValue *const_val = &get_resolved_expr(node)->const_val;
// const_val->ok = true;
// const_val->depends_on_compile_var = true;
//
// if (buf_eql_str(var_name, "is_big_endian")) {
// return resolve_expr_const_val_as_bool(g, node, g->is_big_endian, true);
// } else if (buf_eql_str(var_name, "is_release")) {
// return resolve_expr_const_val_as_bool(g, node, g->is_release_build, true);
// } else if (buf_eql_str(var_name, "is_test")) {
// return resolve_expr_const_val_as_bool(g, node, g->is_test_build, true);
// } else if (buf_eql_str(var_name, "os")) {
// const_val->data.x_enum.tag = g->target_os_index;
// return g->builtin_types.entry_os_enum;
// } else if (buf_eql_str(var_name, "arch")) {
// const_val->data.x_enum.tag = g->target_arch_index;
// return g->builtin_types.entry_arch_enum;
// } else if (buf_eql_str(var_name, "environ")) {
// const_val->data.x_enum.tag = g->target_environ_index;
// return g->builtin_types.entry_environ_enum;
// } else if (buf_eql_str(var_name, "object_format")) {
// const_val->data.x_enum.tag = g->target_oformat_index;
// return g->builtin_types.entry_oformat_enum;
// } else {
// add_node_error(g, *str_node,
// buf_sprintf("unrecognized compile variable: '%s'", buf_ptr(var_name)));
// return g->builtin_types.entry_invalid;
// }
// }
// case BuiltinFnIdConstEval:
// {
// AstNode **expr_node = node->data.fn_call_expr.params.at(0)->parent_field;
@ -7605,53 +7719,6 @@ IrInstruction *ir_exec_const_result(IrExecutable *exec) {
// }
//}
//
//static TypeTableEntry *analyze_array_type(CodeGen *g, ImportTableEntry *import, BlockContext *context,
// TypeTableEntry *expected_type, AstNode *node)
//{
// AstNode *size_node = node->data.array_type.size;
//
// TypeTableEntry *child_type = analyze_type_expr_pointer_only(g, import, context,
// node->data.array_type.child_type, true);
//
// if (child_type->id == TypeTableEntryIdUnreachable) {
// add_node_error(g, node, buf_create_from_str("array of unreachable not allowed"));
// return g->builtin_types.entry_invalid;
// } else if (child_type->id == TypeTableEntryIdInvalid) {
// return g->builtin_types.entry_invalid;
// }
//
// if (size_node) {
// child_type = analyze_type_expr(g, import, context, node->data.array_type.child_type);
// TypeTableEntry *size_type = analyze_expression(g, import, context,
// g->builtin_types.entry_usize, size_node);
// if (size_type->id == TypeTableEntryIdInvalid) {
// return g->builtin_types.entry_invalid;
// }
//
// ConstExprValue *const_val = &get_resolved_expr(size_node)->const_val;
// if (const_val->ok) {
// if (const_val->data.x_bignum.is_negative) {
// add_node_error(g, size_node,
// buf_sprintf("array size %s is negative",
// buf_ptr(bignum_to_buf(&const_val->data.x_bignum))));
// return g->builtin_types.entry_invalid;
// } else {
// return resolve_expr_const_val_as_type(g, node,
// get_array_type(g, child_type, const_val->data.x_bignum.data.x_uint), false);
// }
// } else if (context->fn_entry) {
// return resolve_expr_const_val_as_type(g, node,
// get_slice_type(g, child_type, node->data.array_type.is_const), false);
// } else {
// add_node_error(g, first_executing_node(size_node),
// buf_sprintf("unable to evaluate constant expression"));
// return g->builtin_types.entry_invalid;
// }
// } else {
// TypeTableEntry *slice_type = get_slice_type(g, child_type, node->data.array_type.is_const);
// return resolve_expr_const_val_as_type(g, node, slice_type, false);
// }
//}
//static size_t get_conditional_defer_count(BlockContext *inner_block, BlockContext *outer_block) {
// size_t result = 0;
// while (inner_block != outer_block) {
@ -9572,3 +9639,97 @@ static void analyze_goto_pass2(CodeGen *g, ImportTableEntry *import, AstNode *no
// LLVMPositionBuilderAtEnd(g->builder, basic_block);
// return nullptr;
//}
//static LLVMValueRef gen_overflow_shl_op(CodeGen *g, TypeTableEntry *type_entry,
// LLVMValueRef val1, LLVMValueRef val2)
//{
// // for unsigned left shifting, we do the wrapping shift, then logically shift
// // right the same number of bits
// // if the values don't match, we have an overflow
// // for signed left shifting we do the same except arithmetic shift right
//
// assert(type_entry->id == TypeTableEntryIdInt);
//
// LLVMValueRef result = LLVMBuildShl(g->builder, val1, val2, "");
// LLVMValueRef orig_val;
// if (type_entry->data.integral.is_signed) {
// orig_val = LLVMBuildAShr(g->builder, result, val2, "");
// } else {
// orig_val = LLVMBuildLShr(g->builder, result, val2, "");
// }
// LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, val1, orig_val, "");
//
// LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn->fn_value, "OverflowOk");
// LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn->fn_value, "OverflowFail");
// LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block);
//
// LLVMPositionBuilderAtEnd(g->builder, fail_block);
// gen_debug_safety_crash(g);
//
// LLVMPositionBuilderAtEnd(g->builder, ok_block);
// return result;
//}
//
//static LLVMValueRef gen_div(CodeGen *g, AstNode *source_node, LLVMValueRef val1, LLVMValueRef val2,
// TypeTableEntry *type_entry, bool exact)
//{
//
// if (want_debug_safety(g, source_node)) {
// LLVMValueRef zero = LLVMConstNull(type_entry->type_ref);
// LLVMValueRef is_zero_bit;
// if (type_entry->id == TypeTableEntryIdInt) {
// is_zero_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, val2, zero, "");
// } else if (type_entry->id == TypeTableEntryIdFloat) {
// is_zero_bit = LLVMBuildFCmp(g->builder, LLVMRealOEQ, val2, zero, "");
// } else {
// zig_unreachable();
// }
// LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn->fn_value, "DivZeroOk");
// LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn->fn_value, "DivZeroFail");
// LLVMBuildCondBr(g->builder, is_zero_bit, fail_block, ok_block);
//
// LLVMPositionBuilderAtEnd(g->builder, fail_block);
// gen_debug_safety_crash(g);
//
// LLVMPositionBuilderAtEnd(g->builder, ok_block);
// }
//
// if (type_entry->id == TypeTableEntryIdFloat) {
// assert(!exact);
// return LLVMBuildFDiv(g->builder, val1, val2, "");
// }
//
// assert(type_entry->id == TypeTableEntryIdInt);
//
// if (exact) {
// if (want_debug_safety(g, source_node)) {
// LLVMValueRef remainder_val;
// if (type_entry->data.integral.is_signed) {
// remainder_val = LLVMBuildSRem(g->builder, val1, val2, "");
// } else {
// remainder_val = LLVMBuildURem(g->builder, val1, val2, "");
// }
// LLVMValueRef zero = LLVMConstNull(type_entry->type_ref);
// LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, remainder_val, zero, "");
//
// LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn->fn_value, "DivExactOk");
// LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn->fn_value, "DivExactFail");
// LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block);
//
// LLVMPositionBuilderAtEnd(g->builder, fail_block);
// gen_debug_safety_crash(g);
//
// LLVMPositionBuilderAtEnd(g->builder, ok_block);
// }
// if (type_entry->data.integral.is_signed) {
// return LLVMBuildExactSDiv(g->builder, val1, val2, "");
// } else {
// return ZigLLVMBuildExactUDiv(g->builder, val1, val2, "");
// }
// } else {
// if (type_entry->data.integral.is_signed) {
// return LLVMBuildSDiv(g->builder, val1, val2, "");
// } else {
// return LLVMBuildUDiv(g->builder, val1, val2, "");
// }
// }
//}

View File

@ -472,6 +472,12 @@ static void ir_print_asm(IrPrint *irp, IrInstructionAsm *instruction) {
fprintf(irp->f, ")");
}
static void ir_print_compile_var(IrPrint *irp, IrInstructionCompileVar *instruction) {
fprintf(irp->f, "@compileVar(");
ir_print_other_instruction(irp, instruction->name);
fprintf(irp->f, ")");
}
static void ir_print_instruction(IrPrint *irp, IrInstruction *instruction) {
ir_print_prefix(irp, instruction);
switch (instruction->id) {
@ -561,6 +567,9 @@ static void ir_print_instruction(IrPrint *irp, IrInstruction *instruction) {
case IrInstructionIdAsm:
ir_print_asm(irp, (IrInstructionAsm *)instruction);
break;
case IrInstructionIdCompileVar:
ir_print_compile_var(irp, (IrInstructionCompileVar *)instruction);
break;
case IrInstructionIdSwitchBr:
zig_panic("TODO print more IR instructions");
}