std.compress: rework flate to new I/O API

This commit is contained in:
Andrew Kelley 2025-07-25 22:10:29 -07:00
parent a2d21d6327
commit 83513ade35
24 changed files with 3647 additions and 4990 deletions

View File

@ -1,8 +1,7 @@
//! Compression algorithms.
/// gzip and zlib are here.
pub const flate = @import("compress/flate.zig");
pub const gzip = @import("compress/gzip.zig");
pub const zlib = @import("compress/zlib.zig");
pub const lzma = @import("compress/lzma.zig");
pub const lzma2 = @import("compress/lzma2.zig");
pub const xz = @import("compress/xz.zig");
@ -14,6 +13,4 @@ test {
_ = lzma2;
_ = xz;
_ = zstd;
_ = gzip;
_ = zlib;
}

View File

@ -1,94 +1,189 @@
const builtin = @import("builtin");
const std = @import("../std.zig");
const testing = std.testing;
const Writer = std.io.Writer;
/// Container of the deflate bit stream body. Container adds header before
/// deflate bit stream and footer after. It can bi gzip, zlib or raw (no header,
/// no footer, raw bit stream).
///
/// Zlib format is defined in rfc 1950. Header has 2 bytes and footer 4 bytes
/// addler 32 checksum.
///
/// Gzip format is defined in rfc 1952. Header has 10+ bytes and footer 4 bytes
/// crc32 checksum and 4 bytes of uncompressed data length.
///
///
/// rfc 1950: https://datatracker.ietf.org/doc/html/rfc1950#page-4
/// rfc 1952: https://datatracker.ietf.org/doc/html/rfc1952#page-5
pub const Container = enum {
raw, // no header or footer
gzip, // gzip header and footer
zlib, // zlib header and footer
pub fn size(w: Container) usize {
return headerSize(w) + footerSize(w);
}
pub fn headerSize(w: Container) usize {
return header(w).len;
}
pub fn footerSize(w: Container) usize {
return switch (w) {
.gzip => 8,
.zlib => 4,
.raw => 0,
};
}
pub const list = [_]Container{ .raw, .gzip, .zlib };
pub const Error = error{
BadGzipHeader,
BadZlibHeader,
WrongGzipChecksum,
WrongGzipSize,
WrongZlibChecksum,
};
pub fn header(container: Container) []const u8 {
return switch (container) {
// GZIP 10 byte header (https://datatracker.ietf.org/doc/html/rfc1952#page-5):
// - ID1 (IDentification 1), always 0x1f
// - ID2 (IDentification 2), always 0x8b
// - CM (Compression Method), always 8 = deflate
// - FLG (Flags), all set to 0
// - 4 bytes, MTIME (Modification time), not used, all set to zero
// - XFL (eXtra FLags), all set to zero
// - OS (Operating System), 03 = Unix
.gzip => &[_]u8{ 0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03 },
// ZLIB has a two-byte header (https://datatracker.ietf.org/doc/html/rfc1950#page-4):
// 1st byte:
// - First four bits is the CINFO (compression info), which is 7 for the default deflate window size.
// - The next four bits is the CM (compression method), which is 8 for deflate.
// 2nd byte:
// - Two bits is the FLEVEL (compression level). Values are: 0=fastest, 1=fast, 2=default, 3=best.
// - The next bit, FDICT, is set if a dictionary is given.
// - The final five FCHECK bits form a mod-31 checksum.
//
// CINFO = 7, CM = 8, FLEVEL = 0b10, FDICT = 0, FCHECK = 0b11100
.zlib => &[_]u8{ 0x78, 0b10_0_11100 },
.raw => &.{},
};
}
pub const Hasher = union(Container) {
raw: void,
gzip: struct {
crc: std.hash.Crc32 = .init(),
count: usize = 0,
},
zlib: std.hash.Adler32,
pub fn init(containter: Container) Hasher {
return switch (containter) {
.gzip => .{ .gzip = .{} },
.zlib => .{ .zlib = .init() },
.raw => .raw,
};
}
pub fn container(h: Hasher) Container {
return h;
}
pub fn update(h: *Hasher, buf: []const u8) void {
switch (h.*) {
.raw => {},
.gzip => |*gzip| {
gzip.update(buf);
gzip.count += buf.len;
},
.zlib => |*zlib| {
zlib.update(buf);
},
inline .gzip, .zlib => |*x| x.update(buf),
}
}
pub fn writeFooter(hasher: *Hasher, writer: *Writer) Writer.Error!void {
var bits: [4]u8 = undefined;
switch (hasher.*) {
.gzip => |*gzip| {
// GZIP 8 bytes footer
// - 4 bytes, CRC32 (CRC-32)
// - 4 bytes, ISIZE (Input SIZE) - size of the original (uncompressed) input data modulo 2^32
std.mem.writeInt(u32, &bits, gzip.final(), .little);
try writer.writeAll(&bits);
std.mem.writeInt(u32, &bits, gzip.bytes_read, .little);
try writer.writeAll(&bits);
},
.zlib => |*zlib| {
// ZLIB (RFC 1950) is big-endian, unlike GZIP (RFC 1952).
// 4 bytes of ADLER32 (Adler-32 checksum)
// Checksum value of the uncompressed data (excluding any
// dictionary data) computed according to Adler-32
// algorithm.
std.mem.writeInt(u32, &bits, zlib.final, .big);
try writer.writeAll(&bits);
},
.raw => {},
}
}
};
};
/// When decompressing, the output buffer is used as the history window, so
/// less than this may result in failure to decompress streams that were
/// compressed with a larger window.
pub const max_window_len = 1 << 16;
/// Deflate is a lossless data compression file format that uses a combination
/// of LZ77 and Huffman coding.
pub const deflate = @import("flate/deflate.zig");
pub const Compress = @import("flate/Compress.zig");
/// Inflate is the decoding process that takes a Deflate bitstream for
/// decompression and correctly produces the original full-size data or file.
pub const inflate = @import("flate/inflate.zig");
/// Decompress compressed data from reader and write plain data to the writer.
pub fn decompress(reader: anytype, writer: anytype) !void {
try inflate.decompress(.raw, reader, writer);
}
/// Decompressor type
pub fn Decompressor(comptime ReaderType: type) type {
return inflate.Decompressor(.raw, ReaderType);
}
/// Create Decompressor which will read compressed data from reader.
pub fn decompressor(reader: anytype) Decompressor(@TypeOf(reader)) {
return inflate.decompressor(.raw, reader);
}
/// Compression level, trades between speed and compression size.
pub const Options = deflate.Options;
/// Compress plain data from reader and write compressed data to the writer.
pub fn compress(reader: anytype, writer: anytype, options: Options) !void {
try deflate.compress(.raw, reader, writer, options);
}
/// Compressor type
pub fn Compressor(comptime WriterType: type) type {
return deflate.Compressor(.raw, WriterType);
}
/// Create Compressor which outputs compressed data to the writer.
pub fn compressor(writer: anytype, options: Options) !Compressor(@TypeOf(writer)) {
return try deflate.compressor(.raw, writer, options);
}
pub const Decompress = @import("flate/Decompress.zig");
/// Huffman only compression. Without Lempel-Ziv match searching. Faster
/// compression, less memory requirements but bigger compressed sizes.
pub const huffman = struct {
pub fn compress(reader: anytype, writer: anytype) !void {
try deflate.huffman.compress(.raw, reader, writer);
}
// The odd order in which the codegen code sizes are written.
pub const codegen_order = [_]u32{ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
// The number of codegen codes.
pub const codegen_code_count = 19;
pub fn Compressor(comptime WriterType: type) type {
return deflate.huffman.Compressor(.raw, WriterType);
}
// The largest distance code.
pub const distance_code_count = 30;
pub fn compressor(writer: anytype) !huffman.Compressor(@TypeOf(writer)) {
return deflate.huffman.compressor(.raw, writer);
}
// Maximum number of literals.
pub const max_num_lit = 286;
// Max number of frequencies used for a Huffman Code
// Possible lengths are codegen_code_count (19), distance_code_count (30) and max_num_lit (286).
// The largest of these is max_num_lit.
pub const max_num_frequencies = max_num_lit;
// Biggest block size for uncompressed block.
pub const max_store_block_size = 65535;
// The special code used to mark the end of a block.
pub const end_block_marker = 256;
};
// No compression store only. Compressed size is slightly bigger than plain.
pub const store = struct {
pub fn compress(reader: anytype, writer: anytype) !void {
try deflate.store.compress(.raw, reader, writer);
}
pub fn Compressor(comptime WriterType: type) type {
return deflate.store.Compressor(.raw, WriterType);
}
pub fn compressor(writer: anytype) !store.Compressor(@TypeOf(writer)) {
return deflate.store.compressor(.raw, writer);
}
};
/// Container defines header/footer around deflate bit stream. Gzip and zlib
/// compression algorithms are containers around deflate bit stream body.
const Container = @import("flate/container.zig").Container;
const std = @import("std");
const testing = std.testing;
const fixedBufferStream = std.io.fixedBufferStream;
const print = std.debug.print;
const builtin = @import("builtin");
test {
_ = deflate;
_ = inflate;
_ = Compress;
_ = Decompress;
}
test "compress/decompress" {
const print = std.debug.print;
var cmp_buf: [64 * 1024]u8 = undefined; // compressed data buffer
var dcm_buf: [64 * 1024]u8 = undefined; // decompressed data buffer
const levels = [_]deflate.Level{ .level_4, .level_5, .level_6, .level_7, .level_8, .level_9 };
const levels = [_]Compress.Level{ .level_4, .level_5, .level_6, .level_7, .level_8, .level_9 };
const cases = [_]struct {
data: []const u8, // uncompressed content
// compressed data sizes per level 4-9
@ -135,28 +230,34 @@ test "compress/decompress" {
// compress original stream to compressed stream
{
var original = fixedBufferStream(data);
var compressed = fixedBufferStream(&cmp_buf);
try deflate.compress(container, original.reader(), compressed.writer(), .{ .level = level });
var original: std.io.Reader = .fixed(data);
var compressed: Writer = .fixed(&cmp_buf);
var compress: Compress = .init(&original, &.{}, .{ .container = .raw, .level = level });
const n = try compress.reader.streamRemaining(&compressed);
if (compressed_size == 0) {
if (container == .gzip)
print("case {d} gzip level {} compressed size: {d}\n", .{ case_no, level, compressed.pos });
compressed_size = compressed.pos;
compressed_size = compressed.end;
}
try testing.expectEqual(compressed_size, compressed.pos);
try testing.expectEqual(compressed_size, n);
try testing.expectEqual(compressed_size, compressed.end);
}
// decompress compressed stream to decompressed stream
{
var compressed = fixedBufferStream(cmp_buf[0..compressed_size]);
var decompressed = fixedBufferStream(&dcm_buf);
try inflate.decompress(container, compressed.reader(), decompressed.writer());
try testing.expectEqualSlices(u8, data, decompressed.getWritten());
var compressed: std.io.Reader = .fixed(cmp_buf[0..compressed_size]);
var decompressed: Writer = .fixed(&dcm_buf);
var decompress: Decompress = .init(&compressed, container, &.{});
_ = try decompress.reader.streamRemaining(&decompressed);
try testing.expectEqualSlices(u8, data, decompressed.buffered());
}
// compressor writer interface
{
var compressed = fixedBufferStream(&cmp_buf);
var cmp = try deflate.compressor(container, compressed.writer(), .{ .level = level });
var compressed: Writer = .fixed(&cmp_buf);
var cmp = try Compress.init(&compressed, &.{}, .{
.level = level,
.container = container,
});
var cmp_wrt = cmp.writer();
try cmp_wrt.writeAll(data);
try cmp.finish();
@ -165,10 +266,9 @@ test "compress/decompress" {
}
// decompressor reader interface
{
var compressed = fixedBufferStream(cmp_buf[0..compressed_size]);
var dcm = inflate.decompressor(container, compressed.reader());
var dcm_rdr = dcm.reader();
const n = try dcm_rdr.readAll(&dcm_buf);
var compressed: std.io.Reader = .fixed(cmp_buf[0..compressed_size]);
var decompress: Decompress = .init(&compressed, container, &.{});
const n = try decompress.reader.readSliceShort(&dcm_buf);
try testing.expectEqual(data.len, n);
try testing.expectEqualSlices(u8, data, dcm_buf[0..n]);
}
@ -184,9 +284,9 @@ test "compress/decompress" {
// compress original stream to compressed stream
{
var original = fixedBufferStream(data);
var compressed = fixedBufferStream(&cmp_buf);
var cmp = try deflate.huffman.compressor(container, compressed.writer());
var original: std.io.Reader = .fixed(data);
var compressed: Writer = .fixed(&cmp_buf);
var cmp = try Compress.Huffman.init(container, &compressed);
try cmp.compress(original.reader());
try cmp.finish();
if (compressed_size == 0) {
@ -198,10 +298,11 @@ test "compress/decompress" {
}
// decompress compressed stream to decompressed stream
{
var compressed = fixedBufferStream(cmp_buf[0..compressed_size]);
var decompressed = fixedBufferStream(&dcm_buf);
try inflate.decompress(container, compressed.reader(), decompressed.writer());
try testing.expectEqualSlices(u8, data, decompressed.getWritten());
var compressed: std.io.Reader = .fixed(cmp_buf[0..compressed_size]);
var decompress: Decompress = .init(&compressed, container, &.{});
var decompressed: Writer = .fixed(&dcm_buf);
_ = try decompress.reader.streamRemaining(&decompressed);
try testing.expectEqualSlices(u8, data, decompressed.buffered());
}
}
}
@ -216,9 +317,9 @@ test "compress/decompress" {
// compress original stream to compressed stream
{
var original = fixedBufferStream(data);
var compressed = fixedBufferStream(&cmp_buf);
var cmp = try deflate.store.compressor(container, compressed.writer());
var original: std.io.Reader = .fixed(data);
var compressed: Writer = .fixed(&cmp_buf);
var cmp = try Compress.SimpleCompressor(.store, container).init(&compressed);
try cmp.compress(original.reader());
try cmp.finish();
if (compressed_size == 0) {
@ -231,23 +332,25 @@ test "compress/decompress" {
}
// decompress compressed stream to decompressed stream
{
var compressed = fixedBufferStream(cmp_buf[0..compressed_size]);
var decompressed = fixedBufferStream(&dcm_buf);
try inflate.decompress(container, compressed.reader(), decompressed.writer());
try testing.expectEqualSlices(u8, data, decompressed.getWritten());
var compressed: std.io.Reader = .fixed(cmp_buf[0..compressed_size]);
var decompress: Decompress = .init(&compressed, container, &.{});
var decompressed: Writer = .fixed(&dcm_buf);
_ = try decompress.reader.streamRemaining(&decompressed);
try testing.expectEqualSlices(u8, data, decompressed.buffered());
}
}
}
}
}
fn testDecompress(comptime container: Container, compressed: []const u8, expected_plain: []const u8) !void {
var in = fixedBufferStream(compressed);
var out = std.ArrayList(u8).init(testing.allocator);
defer out.deinit();
fn testDecompress(container: Container, compressed: []const u8, expected_plain: []const u8) !void {
var in: std.io.Reader = .fixed(compressed);
var aw: std.io.Writer.Allocating = .init(testing.allocator);
defer aw.deinit();
try inflate.decompress(container, in.reader(), out.writer());
try testing.expectEqualSlices(u8, expected_plain, out.items);
var decompress: Decompress = .init(&in, container, &.{});
_ = try decompress.reader.streamRemaining(&aw.writer);
try testing.expectEqualSlices(u8, expected_plain, aw.items);
}
test "don't read past deflate stream's end" {
@ -352,126 +455,186 @@ test "gzip header" {
}
test "public interface" {
const plain_data = [_]u8{ 'H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', 0x0a };
const plain_data_buf = [_]u8{ 'H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', 0x0a };
// deflate final stored block, header + plain (stored) data
const deflate_block = [_]u8{
0b0000_0001, 0b0000_1100, 0x00, 0b1111_0011, 0xff, // deflate fixed buffer header len, nlen
} ++ plain_data;
} ++ plain_data_buf;
// gzip header/footer + deflate block
const gzip_data =
[_]u8{ 0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03 } ++ // gzip header (10 bytes)
deflate_block ++
[_]u8{ 0xd5, 0xe0, 0x39, 0xb7, 0x0c, 0x00, 0x00, 0x00 }; // gzip footer checksum (4 byte), size (4 bytes)
const plain_data: []const u8 = &plain_data_buf;
const gzip_data: []const u8 = &deflate_block;
// zlib header/footer + deflate block
const zlib_data = [_]u8{ 0x78, 0b10_0_11100 } ++ // zlib header (2 bytes)}
deflate_block ++
[_]u8{ 0x1c, 0xf2, 0x04, 0x47 }; // zlib footer: checksum
//// gzip header/footer + deflate block
//const gzip_data =
// [_]u8{ 0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03 } ++ // gzip header (10 bytes)
// deflate_block ++
// [_]u8{ 0xd5, 0xe0, 0x39, 0xb7, 0x0c, 0x00, 0x00, 0x00 }; // gzip footer checksum (4 byte), size (4 bytes)
const gzip = @import("gzip.zig");
const zlib = @import("zlib.zig");
const flate = @This();
//// zlib header/footer + deflate block
//const zlib_data = [_]u8{ 0x78, 0b10_0_11100 } ++ // zlib header (2 bytes)}
// deflate_block ++
// [_]u8{ 0x1c, 0xf2, 0x04, 0x47 }; // zlib footer: checksum
try testInterface(gzip, &gzip_data, &plain_data);
try testInterface(zlib, &zlib_data, &plain_data);
try testInterface(flate, &deflate_block, &plain_data);
}
// TODO
//const gzip = @import("gzip.zig");
//const zlib = @import("zlib.zig");
fn testInterface(comptime pkg: type, gzip_data: []const u8, plain_data: []const u8) !void {
var buffer1: [64]u8 = undefined;
var buffer2: [64]u8 = undefined;
var compressed = fixedBufferStream(&buffer1);
var plain = fixedBufferStream(&buffer2);
// TODO These used to be functions, need to migrate the tests
const decompress = void;
const compress = void;
const store = void;
// decompress
{
var in = fixedBufferStream(gzip_data);
try pkg.decompress(in.reader(), plain.writer());
try testing.expectEqualSlices(u8, plain_data, plain.getWritten());
var plain: Writer = .fixed(&buffer2);
var in: std.io.Reader = .fixed(gzip_data);
try decompress(&in, &plain);
try testing.expectEqualSlices(u8, plain_data, plain.buffered());
}
plain.reset();
compressed.reset();
// compress/decompress
{
var in = fixedBufferStream(plain_data);
try pkg.compress(in.reader(), compressed.writer(), .{});
compressed.reset();
try pkg.decompress(compressed.reader(), plain.writer());
try testing.expectEqualSlices(u8, plain_data, plain.getWritten());
var plain: Writer = .fixed(&buffer2);
var compressed: Writer = .fixed(&buffer1);
var in: std.io.Reader = .fixed(plain_data);
try compress(&in, &compressed, .{});
var r: std.io.Reader = .fixed(&buffer1);
try decompress(&r, &plain);
try testing.expectEqualSlices(u8, plain_data, plain.buffered());
}
plain.reset();
compressed.reset();
// compressor/decompressor
{
var in = fixedBufferStream(plain_data);
var cmp = try pkg.compressor(compressed.writer(), .{});
try cmp.compress(in.reader());
var plain: Writer = .fixed(&buffer2);
var compressed: Writer = .fixed(&buffer1);
var in: std.io.Reader = .fixed(plain_data);
var cmp = try Compress(&compressed, .{});
try cmp.compress(&in);
try cmp.finish();
compressed.reset();
var dcp = pkg.decompressor(compressed.reader());
try dcp.decompress(plain.writer());
try testing.expectEqualSlices(u8, plain_data, plain.getWritten());
var r: std.io.Reader = .fixed(&buffer1);
var dcp = Decompress(&r);
try dcp.decompress(&plain);
try testing.expectEqualSlices(u8, plain_data, plain.buffered());
}
plain.reset();
compressed.reset();
// huffman
{
// huffman compress/decompress
{
var in = fixedBufferStream(plain_data);
try pkg.huffman.compress(in.reader(), compressed.writer());
compressed.reset();
try pkg.decompress(compressed.reader(), plain.writer());
try testing.expectEqualSlices(u8, plain_data, plain.getWritten());
var plain: Writer = .fixed(&buffer2);
var compressed: Writer = .fixed(&buffer1);
var in: std.io.Reader = .fixed(plain_data);
try huffman.compress(&in, &compressed);
var r: std.io.Reader = .fixed(&buffer1);
try decompress(&r, &plain);
try testing.expectEqualSlices(u8, plain_data, plain.buffered());
}
plain.reset();
compressed.reset();
// huffman compressor/decompressor
{
var in = fixedBufferStream(plain_data);
var cmp = try pkg.huffman.compressor(compressed.writer());
try cmp.compress(in.reader());
var plain: Writer = .fixed(&buffer2);
var compressed: Writer = .fixed(&buffer1);
var in: std.io.Reader = .fixed(plain_data);
var cmp = try huffman.Compressor(&compressed);
try cmp.compress(&in);
try cmp.finish();
compressed.reset();
try pkg.decompress(compressed.reader(), plain.writer());
try testing.expectEqualSlices(u8, plain_data, plain.getWritten());
var r: std.io.Reader = .fixed(&buffer1);
try decompress(&r, &plain);
try testing.expectEqualSlices(u8, plain_data, plain.buffered());
}
}
plain.reset();
compressed.reset();
// store
{
// store compress/decompress
{
var in = fixedBufferStream(plain_data);
try pkg.store.compress(in.reader(), compressed.writer());
compressed.reset();
try pkg.decompress(compressed.reader(), plain.writer());
try testing.expectEqualSlices(u8, plain_data, plain.getWritten());
var plain: Writer = .fixed(&buffer2);
var compressed: Writer = .fixed(&buffer1);
var in: std.io.Reader = .fixed(plain_data);
try store.compress(&in, &compressed);
var r: std.io.Reader = .fixed(&buffer1);
try decompress(&r, &plain);
try testing.expectEqualSlices(u8, plain_data, plain.buffered());
}
plain.reset();
compressed.reset();
// store compressor/decompressor
{
var in = fixedBufferStream(plain_data);
var cmp = try pkg.store.compressor(compressed.writer());
try cmp.compress(in.reader());
var plain: Writer = .fixed(&buffer2);
var compressed: Writer = .fixed(&buffer1);
var in: std.io.Reader = .fixed(plain_data);
var cmp = try store.compressor(&compressed);
try cmp.compress(&in);
try cmp.finish();
compressed.reset();
try pkg.decompress(compressed.reader(), plain.writer());
try testing.expectEqualSlices(u8, plain_data, plain.getWritten());
var r: std.io.Reader = .fixed(&buffer1);
try decompress(&r, &plain);
try testing.expectEqualSlices(u8, plain_data, plain.buffered());
}
}
}
pub const match = struct {
pub const base_length = 3; // smallest match length per the RFC section 3.2.5
pub const min_length = 4; // min length used in this algorithm
pub const max_length = 258;
pub const min_distance = 1;
pub const max_distance = 32768;
};
pub const history_len = match.max_distance;
pub const lookup = struct {
pub const bits = 15;
pub const len = 1 << bits;
pub const shift = 32 - bits;
};
test "zlib should not overshoot" {
// Compressed zlib data with extra 4 bytes at the end.
const data = [_]u8{
0x78, 0x9c, 0x73, 0xce, 0x2f, 0xa8, 0x2c, 0xca, 0x4c, 0xcf, 0x28, 0x51, 0x08, 0xcf, 0xcc, 0xc9,
0x49, 0xcd, 0x55, 0x28, 0x4b, 0xcc, 0x53, 0x08, 0x4e, 0xce, 0x48, 0xcc, 0xcc, 0xd6, 0x51, 0x08,
0xce, 0xcc, 0x4b, 0x4f, 0x2c, 0xc8, 0x2f, 0x4a, 0x55, 0x30, 0xb4, 0xb4, 0x34, 0xd5, 0xb5, 0x34,
0x03, 0x00, 0x8b, 0x61, 0x0f, 0xa4, 0x52, 0x5a, 0x94, 0x12,
};
var stream: std.io.Reader = .fixed(&data);
const reader = stream.reader();
var dcp = Decompress.init(reader);
var out: [128]u8 = undefined;
// Decompress
var n = try dcp.reader().readAll(out[0..]);
// Expected decompressed data
try std.testing.expectEqual(46, n);
try std.testing.expectEqualStrings("Copyright Willem van Schaik, Singapore 1995-96", out[0..n]);
// Decompressor don't overshoot underlying reader.
// It is leaving it at the end of compressed data chunk.
try std.testing.expectEqual(data.len - 4, stream.getPos());
try std.testing.expectEqual(0, dcp.unreadBytes());
// 4 bytes after compressed chunk are available in reader.
n = try reader.readAll(out[0..]);
try std.testing.expectEqual(n, 4);
try std.testing.expectEqualSlices(u8, data[data.len - 4 .. data.len], out[0..n]);
}

View File

@ -0,0 +1,696 @@
//! Accepts list of tokens, decides what is best block type to write. What block
//! type will provide best compression. Writes header and body of the block.
const std = @import("std");
const io = std.io;
const assert = std.debug.assert;
const Writer = std.io.Writer;
const BlockWriter = @This();
const flate = @import("../flate.zig");
const Compress = flate.Compress;
const huffman = flate.huffman;
const Token = @import("Token.zig");
const codegen_order = huffman.codegen_order;
const end_code_mark = 255;
output: *Writer,
codegen_freq: [huffman.codegen_code_count]u16 = undefined,
literal_freq: [huffman.max_num_lit]u16 = undefined,
distance_freq: [huffman.distance_code_count]u16 = undefined,
codegen: [huffman.max_num_lit + huffman.distance_code_count + 1]u8 = undefined,
literal_encoding: Compress.LiteralEncoder = .{},
distance_encoding: Compress.DistanceEncoder = .{},
codegen_encoding: Compress.CodegenEncoder = .{},
fixed_literal_encoding: Compress.LiteralEncoder,
fixed_distance_encoding: Compress.DistanceEncoder,
huff_distance: Compress.DistanceEncoder,
pub fn init(output: *Writer) BlockWriter {
return .{
.output = output,
.fixed_literal_encoding = Compress.fixedLiteralEncoder(),
.fixed_distance_encoding = Compress.fixedDistanceEncoder(),
.huff_distance = Compress.huffmanDistanceEncoder(),
};
}
/// Flush intrenal bit buffer to the writer.
/// Should be called only when bit stream is at byte boundary.
///
/// That is after final block; when last byte could be incomplete or
/// after stored block; which is aligned to the byte boundary (it has x
/// padding bits after first 3 bits).
pub fn flush(self: *BlockWriter) Writer.Error!void {
try self.bit_writer.flush();
}
pub fn setWriter(self: *BlockWriter, new_writer: *Writer) void {
self.bit_writer.setWriter(new_writer);
}
fn writeCode(self: *BlockWriter, c: Compress.HuffCode) Writer.Error!void {
try self.bit_writer.writeBits(c.code, c.len);
}
// RFC 1951 3.2.7 specifies a special run-length encoding for specifying
// the literal and distance lengths arrays (which are concatenated into a single
// array). This method generates that run-length encoding.
//
// The result is written into the codegen array, and the frequencies
// of each code is written into the codegen_freq array.
// Codes 0-15 are single byte codes. Codes 16-18 are followed by additional
// information. Code bad_code is an end marker
//
// num_literals: The number of literals in literal_encoding
// num_distances: The number of distances in distance_encoding
// lit_enc: The literal encoder to use
// dist_enc: The distance encoder to use
fn generateCodegen(
self: *BlockWriter,
num_literals: u32,
num_distances: u32,
lit_enc: *Compress.LiteralEncoder,
dist_enc: *Compress.DistanceEncoder,
) void {
for (self.codegen_freq, 0..) |_, i| {
self.codegen_freq[i] = 0;
}
// Note that we are using codegen both as a temporary variable for holding
// a copy of the frequencies, and as the place where we put the result.
// This is fine because the output is always shorter than the input used
// so far.
var codegen = &self.codegen; // cache
// Copy the concatenated code sizes to codegen. Put a marker at the end.
var cgnl = codegen[0..num_literals];
for (cgnl, 0..) |_, i| {
cgnl[i] = @as(u8, @intCast(lit_enc.codes[i].len));
}
cgnl = codegen[num_literals .. num_literals + num_distances];
for (cgnl, 0..) |_, i| {
cgnl[i] = @as(u8, @intCast(dist_enc.codes[i].len));
}
codegen[num_literals + num_distances] = end_code_mark;
var size = codegen[0];
var count: i32 = 1;
var out_index: u32 = 0;
var in_index: u32 = 1;
while (size != end_code_mark) : (in_index += 1) {
// INVARIANT: We have seen "count" copies of size that have not yet
// had output generated for them.
const next_size = codegen[in_index];
if (next_size == size) {
count += 1;
continue;
}
// We need to generate codegen indicating "count" of size.
if (size != 0) {
codegen[out_index] = size;
out_index += 1;
self.codegen_freq[size] += 1;
count -= 1;
while (count >= 3) {
var n: i32 = 6;
if (n > count) {
n = count;
}
codegen[out_index] = 16;
out_index += 1;
codegen[out_index] = @as(u8, @intCast(n - 3));
out_index += 1;
self.codegen_freq[16] += 1;
count -= n;
}
} else {
while (count >= 11) {
var n: i32 = 138;
if (n > count) {
n = count;
}
codegen[out_index] = 18;
out_index += 1;
codegen[out_index] = @as(u8, @intCast(n - 11));
out_index += 1;
self.codegen_freq[18] += 1;
count -= n;
}
if (count >= 3) {
// 3 <= count <= 10
codegen[out_index] = 17;
out_index += 1;
codegen[out_index] = @as(u8, @intCast(count - 3));
out_index += 1;
self.codegen_freq[17] += 1;
count = 0;
}
}
count -= 1;
while (count >= 0) : (count -= 1) {
codegen[out_index] = size;
out_index += 1;
self.codegen_freq[size] += 1;
}
// Set up invariant for next time through the loop.
size = next_size;
count = 1;
}
// Marker indicating the end of the codegen.
codegen[out_index] = end_code_mark;
}
const DynamicSize = struct {
size: u32,
num_codegens: u32,
};
// dynamicSize returns the size of dynamically encoded data in bits.
fn dynamicSize(
self: *BlockWriter,
lit_enc: *Compress.LiteralEncoder, // literal encoder
dist_enc: *Compress.DistanceEncoder, // distance encoder
extra_bits: u32,
) DynamicSize {
var num_codegens = self.codegen_freq.len;
while (num_codegens > 4 and self.codegen_freq[codegen_order[num_codegens - 1]] == 0) {
num_codegens -= 1;
}
const header = 3 + 5 + 5 + 4 + (3 * num_codegens) +
self.codegen_encoding.bitLength(self.codegen_freq[0..]) +
self.codegen_freq[16] * 2 +
self.codegen_freq[17] * 3 +
self.codegen_freq[18] * 7;
const size = header +
lit_enc.bitLength(&self.literal_freq) +
dist_enc.bitLength(&self.distance_freq) +
extra_bits;
return DynamicSize{
.size = @as(u32, @intCast(size)),
.num_codegens = @as(u32, @intCast(num_codegens)),
};
}
// fixedSize returns the size of dynamically encoded data in bits.
fn fixedSize(self: *BlockWriter, extra_bits: u32) u32 {
return 3 +
self.fixed_literal_encoding.bitLength(&self.literal_freq) +
self.fixed_distance_encoding.bitLength(&self.distance_freq) +
extra_bits;
}
const StoredSize = struct {
size: u32,
storable: bool,
};
// storedSizeFits calculates the stored size, including header.
// The function returns the size in bits and whether the block
// fits inside a single block.
fn storedSizeFits(in: ?[]const u8) StoredSize {
if (in == null) {
return .{ .size = 0, .storable = false };
}
if (in.?.len <= huffman.max_store_block_size) {
return .{ .size = @as(u32, @intCast((in.?.len + 5) * 8)), .storable = true };
}
return .{ .size = 0, .storable = false };
}
// Write the header of a dynamic Huffman block to the output stream.
//
// num_literals: The number of literals specified in codegen
// num_distances: The number of distances specified in codegen
// num_codegens: The number of codegens used in codegen
// eof: Is it the end-of-file? (end of stream)
fn dynamicHeader(
self: *BlockWriter,
num_literals: u32,
num_distances: u32,
num_codegens: u32,
eof: bool,
) Writer.Error!void {
const first_bits: u32 = if (eof) 5 else 4;
try self.bit_writer.writeBits(first_bits, 3);
try self.bit_writer.writeBits(num_literals - 257, 5);
try self.bit_writer.writeBits(num_distances - 1, 5);
try self.bit_writer.writeBits(num_codegens - 4, 4);
var i: u32 = 0;
while (i < num_codegens) : (i += 1) {
const value = self.codegen_encoding.codes[codegen_order[i]].len;
try self.bit_writer.writeBits(value, 3);
}
i = 0;
while (true) {
const code_word: u32 = @as(u32, @intCast(self.codegen[i]));
i += 1;
if (code_word == end_code_mark) {
break;
}
try self.writeCode(self.codegen_encoding.codes[@as(u32, @intCast(code_word))]);
switch (code_word) {
16 => {
try self.bit_writer.writeBits(self.codegen[i], 2);
i += 1;
},
17 => {
try self.bit_writer.writeBits(self.codegen[i], 3);
i += 1;
},
18 => {
try self.bit_writer.writeBits(self.codegen[i], 7);
i += 1;
},
else => {},
}
}
}
fn storedHeader(self: *BlockWriter, length: usize, eof: bool) Writer.Error!void {
assert(length <= 65535);
const flag: u32 = if (eof) 1 else 0;
try self.bit_writer.writeBits(flag, 3);
try self.flush();
const l: u16 = @intCast(length);
try self.bit_writer.writeBits(l, 16);
try self.bit_writer.writeBits(~l, 16);
}
fn fixedHeader(self: *BlockWriter, eof: bool) Writer.Error!void {
// Indicate that we are a fixed Huffman block
var value: u32 = 2;
if (eof) {
value = 3;
}
try self.bit_writer.writeBits(value, 3);
}
// Write a block of tokens with the smallest encoding. Will choose block type.
// The original input can be supplied, and if the huffman encoded data
// is larger than the original bytes, the data will be written as a
// stored block.
// If the input is null, the tokens will always be Huffman encoded.
pub fn write(self: *BlockWriter, tokens: []const Token, eof: bool, input: ?[]const u8) Writer.Error!void {
const lit_and_dist = self.indexTokens(tokens);
const num_literals = lit_and_dist.num_literals;
const num_distances = lit_and_dist.num_distances;
var extra_bits: u32 = 0;
const ret = storedSizeFits(input);
const stored_size = ret.size;
const storable = ret.storable;
if (storable) {
// We only bother calculating the costs of the extra bits required by
// the length of distance fields (which will be the same for both fixed
// and dynamic encoding), if we need to compare those two encodings
// against stored encoding.
var length_code: u16 = Token.length_codes_start + 8;
while (length_code < num_literals) : (length_code += 1) {
// First eight length codes have extra size = 0.
extra_bits += @as(u32, @intCast(self.literal_freq[length_code])) *
@as(u32, @intCast(Token.lengthExtraBits(length_code)));
}
var distance_code: u16 = 4;
while (distance_code < num_distances) : (distance_code += 1) {
// First four distance codes have extra size = 0.
extra_bits += @as(u32, @intCast(self.distance_freq[distance_code])) *
@as(u32, @intCast(Token.distanceExtraBits(distance_code)));
}
}
// Figure out smallest code.
// Fixed Huffman baseline.
var literal_encoding = &self.fixed_literal_encoding;
var distance_encoding = &self.fixed_distance_encoding;
var size = self.fixedSize(extra_bits);
// Dynamic Huffman?
var num_codegens: u32 = 0;
// Generate codegen and codegenFrequencies, which indicates how to encode
// the literal_encoding and the distance_encoding.
self.generateCodegen(
num_literals,
num_distances,
&self.literal_encoding,
&self.distance_encoding,
);
self.codegen_encoding.generate(self.codegen_freq[0..], 7);
const dynamic_size = self.dynamicSize(
&self.literal_encoding,
&self.distance_encoding,
extra_bits,
);
const dyn_size = dynamic_size.size;
num_codegens = dynamic_size.num_codegens;
if (dyn_size < size) {
size = dyn_size;
literal_encoding = &self.literal_encoding;
distance_encoding = &self.distance_encoding;
}
// Stored bytes?
if (storable and stored_size < size) {
try self.storedBlock(input.?, eof);
return;
}
// Huffman.
if (@intFromPtr(literal_encoding) == @intFromPtr(&self.fixed_literal_encoding)) {
try self.fixedHeader(eof);
} else {
try self.dynamicHeader(num_literals, num_distances, num_codegens, eof);
}
// Write the tokens.
try self.writeTokens(tokens, &literal_encoding.codes, &distance_encoding.codes);
}
pub fn storedBlock(self: *BlockWriter, input: []const u8, eof: bool) Writer.Error!void {
try self.storedHeader(input.len, eof);
try self.bit_writer.writeBytes(input);
}
// writeBlockDynamic encodes a block using a dynamic Huffman table.
// This should be used if the symbols used have a disproportionate
// histogram distribution.
// If input is supplied and the compression savings are below 1/16th of the
// input size the block is stored.
fn dynamicBlock(
self: *BlockWriter,
tokens: []const Token,
eof: bool,
input: ?[]const u8,
) Writer.Error!void {
const total_tokens = self.indexTokens(tokens);
const num_literals = total_tokens.num_literals;
const num_distances = total_tokens.num_distances;
// Generate codegen and codegenFrequencies, which indicates how to encode
// the literal_encoding and the distance_encoding.
self.generateCodegen(
num_literals,
num_distances,
&self.literal_encoding,
&self.distance_encoding,
);
self.codegen_encoding.generate(self.codegen_freq[0..], 7);
const dynamic_size = self.dynamicSize(&self.literal_encoding, &self.distance_encoding, 0);
const size = dynamic_size.size;
const num_codegens = dynamic_size.num_codegens;
// Store bytes, if we don't get a reasonable improvement.
const stored_size = storedSizeFits(input);
const ssize = stored_size.size;
const storable = stored_size.storable;
if (storable and ssize < (size + (size >> 4))) {
try self.storedBlock(input.?, eof);
return;
}
// Write Huffman table.
try self.dynamicHeader(num_literals, num_distances, num_codegens, eof);
// Write the tokens.
try self.writeTokens(tokens, &self.literal_encoding.codes, &self.distance_encoding.codes);
}
const TotalIndexedTokens = struct {
num_literals: u32,
num_distances: u32,
};
// Indexes a slice of tokens followed by an end_block_marker, and updates
// literal_freq and distance_freq, and generates literal_encoding
// and distance_encoding.
// The number of literal and distance tokens is returned.
fn indexTokens(self: *BlockWriter, tokens: []const Token) TotalIndexedTokens {
var num_literals: u32 = 0;
var num_distances: u32 = 0;
for (self.literal_freq, 0..) |_, i| {
self.literal_freq[i] = 0;
}
for (self.distance_freq, 0..) |_, i| {
self.distance_freq[i] = 0;
}
for (tokens) |t| {
if (t.kind == Token.Kind.literal) {
self.literal_freq[t.literal()] += 1;
continue;
}
self.literal_freq[t.lengthCode()] += 1;
self.distance_freq[t.distanceCode()] += 1;
}
// add end_block_marker token at the end
self.literal_freq[huffman.end_block_marker] += 1;
// get the number of literals
num_literals = @as(u32, @intCast(self.literal_freq.len));
while (self.literal_freq[num_literals - 1] == 0) {
num_literals -= 1;
}
// get the number of distances
num_distances = @as(u32, @intCast(self.distance_freq.len));
while (num_distances > 0 and self.distance_freq[num_distances - 1] == 0) {
num_distances -= 1;
}
if (num_distances == 0) {
// We haven't found a single match. If we want to go with the dynamic encoding,
// we should count at least one distance to be sure that the distance huffman tree could be encoded.
self.distance_freq[0] = 1;
num_distances = 1;
}
self.literal_encoding.generate(&self.literal_freq, 15);
self.distance_encoding.generate(&self.distance_freq, 15);
return TotalIndexedTokens{
.num_literals = num_literals,
.num_distances = num_distances,
};
}
// Writes a slice of tokens to the output followed by and end_block_marker.
// codes for literal and distance encoding must be supplied.
fn writeTokens(
self: *BlockWriter,
tokens: []const Token,
le_codes: []Compress.HuffCode,
oe_codes: []Compress.HuffCode,
) Writer.Error!void {
for (tokens) |t| {
if (t.kind == Token.Kind.literal) {
try self.writeCode(le_codes[t.literal()]);
continue;
}
// Write the length
const le = t.lengthEncoding();
try self.writeCode(le_codes[le.code]);
if (le.extra_bits > 0) {
try self.bit_writer.writeBits(le.extra_length, le.extra_bits);
}
// Write the distance
const oe = t.distanceEncoding();
try self.writeCode(oe_codes[oe.code]);
if (oe.extra_bits > 0) {
try self.bit_writer.writeBits(oe.extra_distance, oe.extra_bits);
}
}
// add end_block_marker at the end
try self.writeCode(le_codes[huffman.end_block_marker]);
}
// Encodes a block of bytes as either Huffman encoded literals or uncompressed bytes
// if the results only gains very little from compression.
pub fn huffmanBlock(self: *BlockWriter, input: []const u8, eof: bool) Writer.Error!void {
// Add everything as literals
histogram(input, &self.literal_freq);
self.literal_freq[huffman.end_block_marker] = 1;
const num_literals = huffman.end_block_marker + 1;
self.distance_freq[0] = 1;
const num_distances = 1;
self.literal_encoding.generate(&self.literal_freq, 15);
// Figure out smallest code.
// Always use dynamic Huffman or Store
var num_codegens: u32 = 0;
// Generate codegen and codegenFrequencies, which indicates how to encode
// the literal_encoding and the distance_encoding.
self.generateCodegen(
num_literals,
num_distances,
&self.literal_encoding,
&self.huff_distance,
);
self.codegen_encoding.generate(self.codegen_freq[0..], 7);
const dynamic_size = self.dynamicSize(&self.literal_encoding, &self.huff_distance, 0);
const size = dynamic_size.size;
num_codegens = dynamic_size.num_codegens;
// Store bytes, if we don't get a reasonable improvement.
const stored_size_ret = storedSizeFits(input);
const ssize = stored_size_ret.size;
const storable = stored_size_ret.storable;
if (storable and ssize < (size + (size >> 4))) {
try self.storedBlock(input, eof);
return;
}
// Huffman.
try self.dynamicHeader(num_literals, num_distances, num_codegens, eof);
const encoding = self.literal_encoding.codes[0..257];
for (input) |t| {
const c = encoding[t];
try self.bit_writer.writeBits(c.code, c.len);
}
try self.writeCode(encoding[huffman.end_block_marker]);
}
// histogram accumulates a histogram of b in h.
fn histogram(b: []const u8, h: *[286]u16) void {
// Clear histogram
for (h, 0..) |_, i| {
h[i] = 0;
}
var lh = h.*[0..256];
for (b) |t| {
lh[t] += 1;
}
}
// tests
const expect = std.testing.expect;
const fmt = std.fmt;
const testing = std.testing;
const ArrayList = std.ArrayList;
const TestCase = @import("testdata/block_writer.zig").TestCase;
const testCases = @import("testdata/block_writer.zig").testCases;
// tests if the writeBlock encoding has changed.
test "write" {
inline for (0..testCases.len) |i| {
try testBlock(testCases[i], .write_block);
}
}
// tests if the writeBlockDynamic encoding has changed.
test "dynamicBlock" {
inline for (0..testCases.len) |i| {
try testBlock(testCases[i], .write_dyn_block);
}
}
test "huffmanBlock" {
inline for (0..testCases.len) |i| {
try testBlock(testCases[i], .write_huffman_block);
}
try testBlock(.{
.tokens = &[_]Token{},
.input = "huffman-rand-max.input",
.want = "huffman-rand-max.{s}.expect",
}, .write_huffman_block);
}
const TestFn = enum {
write_block,
write_dyn_block, // write dynamic block
write_huffman_block,
fn to_s(self: TestFn) []const u8 {
return switch (self) {
.write_block => "wb",
.write_dyn_block => "dyn",
.write_huffman_block => "huff",
};
}
fn write(
comptime self: TestFn,
bw: anytype,
tok: []const Token,
input: ?[]const u8,
final: bool,
) !void {
switch (self) {
.write_block => try bw.write(tok, final, input),
.write_dyn_block => try bw.dynamicBlock(tok, final, input),
.write_huffman_block => try bw.huffmanBlock(input.?, final),
}
try bw.flush();
}
};
// testBlock tests a block against its references
//
// size
// 64K [file-name].input - input non compressed file
// 8.1K [file-name].golden -
// 78 [file-name].dyn.expect - output with writeBlockDynamic
// 78 [file-name].wb.expect - output with writeBlock
// 8.1K [file-name].huff.expect - output with writeBlockHuff
// 78 [file-name].dyn.expect-noinput - output with writeBlockDynamic when input is null
// 78 [file-name].wb.expect-noinput - output with writeBlock when input is null
//
// wb - writeBlock
// dyn - writeBlockDynamic
// huff - writeBlockHuff
//
fn testBlock(comptime tc: TestCase, comptime tfn: TestFn) !void {
if (tc.input.len != 0 and tc.want.len != 0) {
const want_name = comptime fmt.comptimePrint(tc.want, .{tfn.to_s()});
const input = @embedFile("testdata/block_writer/" ++ tc.input);
const want = @embedFile("testdata/block_writer/" ++ want_name);
try testWriteBlock(tfn, input, want, tc.tokens);
}
if (tfn == .write_huffman_block) {
return;
}
const want_name_no_input = comptime fmt.comptimePrint(tc.want_no_input, .{tfn.to_s()});
const want = @embedFile("testdata/block_writer/" ++ want_name_no_input);
try testWriteBlock(tfn, null, want, tc.tokens);
}
// Uses writer function `tfn` to write `tokens`, tests that we got `want` as output.
fn testWriteBlock(comptime tfn: TestFn, input: ?[]const u8, want: []const u8, tokens: []const Token) !void {
var buf = ArrayList(u8).init(testing.allocator);
var bw: BlockWriter = .init(buf.writer());
try tfn.write(&bw, tokens, input, false);
var got = buf.items;
try testing.expectEqualSlices(u8, want, got); // expect writeBlock to yield expected result
try expect(got[0] & 0b0000_0001 == 0); // bfinal is not set
//
// Test if the writer produces the same output after reset.
buf.deinit();
buf = ArrayList(u8).init(testing.allocator);
defer buf.deinit();
bw.setWriter(buf.writer());
try tfn.write(&bw, tokens, input, true);
try bw.flush();
got = buf.items;
try expect(got[0] & 1 == 1); // bfinal is set
buf.items[0] &= 0b1111_1110; // remove bfinal bit, so we can run test slices
try testing.expectEqualSlices(u8, want, got); // expect writeBlock to yield expected result
}

View File

@ -1,240 +0,0 @@
//! 64K buffer of uncompressed data created in inflate (decompression). Has enough
//! history to support writing match<length, distance>; copying length of bytes
//! from the position distance backward from current.
//!
//! Reads can return less than available bytes if they are spread across
//! different circles. So reads should repeat until get required number of bytes
//! or until returned slice is zero length.
//!
//! Note on deflate limits:
//! * non-compressible block is limited to 65,535 bytes.
//! * backward pointer is limited in distance to 32K bytes and in length to 258 bytes.
//!
//! Whole non-compressed block can be written without overlap. We always have
//! history of up to 64K, more then 32K needed.
//!
const std = @import("std");
const assert = std.debug.assert;
const testing = std.testing;
const consts = @import("consts.zig").match;
const mask = 0xffff; // 64K - 1
const buffer_len = mask + 1; // 64K buffer
const Self = @This();
buffer: [buffer_len]u8 = undefined,
wp: usize = 0, // write position
rp: usize = 0, // read position
fn writeAll(self: *Self, buf: []const u8) void {
for (buf) |c| self.write(c);
}
/// Write literal.
pub fn write(self: *Self, b: u8) void {
assert(self.wp - self.rp < mask);
self.buffer[self.wp & mask] = b;
self.wp += 1;
}
/// Write match (back-reference to the same data slice) starting at `distance`
/// back from current write position, and `length` of bytes.
pub fn writeMatch(self: *Self, length: u16, distance: u16) !void {
if (self.wp < distance or
length < consts.base_length or length > consts.max_length or
distance < consts.min_distance or distance > consts.max_distance)
{
return error.InvalidMatch;
}
assert(self.wp - self.rp < mask);
var from: usize = self.wp - distance & mask;
const from_end: usize = from + length;
var to: usize = self.wp & mask;
const to_end: usize = to + length;
self.wp += length;
// Fast path using memcpy
if (from_end < buffer_len and to_end < buffer_len) // start and end at the same circle
{
var cur_len = distance;
var remaining_len = length;
while (cur_len < remaining_len) {
@memcpy(self.buffer[to..][0..cur_len], self.buffer[from..][0..cur_len]);
to += cur_len;
remaining_len -= cur_len;
cur_len = cur_len * 2;
}
@memcpy(self.buffer[to..][0..remaining_len], self.buffer[from..][0..remaining_len]);
return;
}
// Slow byte by byte
while (to < to_end) {
self.buffer[to & mask] = self.buffer[from & mask];
to += 1;
from += 1;
}
}
/// Returns writable part of the internal buffer of size `n` at most. Advances
/// write pointer, assumes that returned buffer will be filled with data.
pub fn getWritable(self: *Self, n: usize) []u8 {
const wp = self.wp & mask;
const len = @min(n, buffer_len - wp);
self.wp += len;
return self.buffer[wp .. wp + len];
}
/// Read available data. Can return part of the available data if it is
/// spread across two circles. So read until this returns zero length.
pub fn read(self: *Self) []const u8 {
return self.readAtMost(buffer_len);
}
/// Read part of available data. Can return less than max even if there are
/// more than max decoded data.
pub fn readAtMost(self: *Self, limit: usize) []const u8 {
const rb = self.readBlock(if (limit == 0) buffer_len else limit);
defer self.rp += rb.len;
return self.buffer[rb.head..rb.tail];
}
const ReadBlock = struct {
head: usize,
tail: usize,
len: usize,
};
/// Returns position of continuous read block data.
fn readBlock(self: *Self, max: usize) ReadBlock {
const r = self.rp & mask;
const w = self.wp & mask;
const n = @min(
max,
if (w >= r) w - r else buffer_len - r,
);
return .{
.head = r,
.tail = r + n,
.len = n,
};
}
/// Number of free bytes for write.
pub fn free(self: *Self) usize {
return buffer_len - (self.wp - self.rp);
}
/// Full if largest match can't fit. 258 is largest match length. That much
/// bytes can be produced in single decode step.
pub fn full(self: *Self) bool {
return self.free() < 258 + 1;
}
// example from: https://youtu.be/SJPvNi4HrWQ?t=3558
test writeMatch {
var cb: Self = .{};
cb.writeAll("a salad; ");
try cb.writeMatch(5, 9);
try cb.writeMatch(3, 3);
try testing.expectEqualStrings("a salad; a salsal", cb.read());
}
test "writeMatch overlap" {
var cb: Self = .{};
cb.writeAll("a b c ");
try cb.writeMatch(8, 4);
cb.write('d');
try testing.expectEqualStrings("a b c b c b c d", cb.read());
}
test readAtMost {
var cb: Self = .{};
cb.writeAll("0123456789");
try cb.writeMatch(50, 10);
try testing.expectEqualStrings("0123456789" ** 6, cb.buffer[cb.rp..cb.wp]);
for (0..6) |i| {
try testing.expectEqual(i * 10, cb.rp);
try testing.expectEqualStrings("0123456789", cb.readAtMost(10));
}
try testing.expectEqualStrings("", cb.readAtMost(10));
try testing.expectEqualStrings("", cb.read());
}
test Self {
var cb: Self = .{};
const data = "0123456789abcdef" ** (1024 / 16);
cb.writeAll(data);
try testing.expectEqual(@as(usize, 0), cb.rp);
try testing.expectEqual(@as(usize, 1024), cb.wp);
try testing.expectEqual(@as(usize, 1024 * 63), cb.free());
for (0..62 * 4) |_|
try cb.writeMatch(256, 1024); // write 62K
try testing.expectEqual(@as(usize, 0), cb.rp);
try testing.expectEqual(@as(usize, 63 * 1024), cb.wp);
try testing.expectEqual(@as(usize, 1024), cb.free());
cb.writeAll(data[0..200]);
_ = cb.readAtMost(1024); // make some space
cb.writeAll(data); // overflows write position
try testing.expectEqual(@as(usize, 200 + 65536), cb.wp);
try testing.expectEqual(@as(usize, 1024), cb.rp);
try testing.expectEqual(@as(usize, 1024 - 200), cb.free());
const rb = cb.readBlock(Self.buffer_len);
try testing.expectEqual(@as(usize, 65536 - 1024), rb.len);
try testing.expectEqual(@as(usize, 1024), rb.head);
try testing.expectEqual(@as(usize, 65536), rb.tail);
try testing.expectEqual(@as(usize, 65536 - 1024), cb.read().len); // read to the end of the buffer
try testing.expectEqual(@as(usize, 200 + 65536), cb.wp);
try testing.expectEqual(@as(usize, 65536), cb.rp);
try testing.expectEqual(@as(usize, 65536 - 200), cb.free());
try testing.expectEqual(@as(usize, 200), cb.read().len); // read the rest
}
test "write overlap" {
var cb: Self = .{};
cb.wp = cb.buffer.len - 15;
cb.rp = cb.wp;
cb.writeAll("0123456789");
cb.writeAll("abcdefghij");
try testing.expectEqual(cb.buffer.len + 5, cb.wp);
try testing.expectEqual(cb.buffer.len - 15, cb.rp);
try testing.expectEqualStrings("0123456789abcde", cb.read());
try testing.expectEqualStrings("fghij", cb.read());
try testing.expect(cb.wp == cb.rp);
}
test "writeMatch/read overlap" {
var cb: Self = .{};
cb.wp = cb.buffer.len - 15;
cb.rp = cb.wp;
cb.writeAll("0123456789");
try cb.writeMatch(15, 5);
try testing.expectEqualStrings("012345678956789", cb.read());
try testing.expectEqualStrings("5678956789", cb.read());
try cb.writeMatch(20, 25);
try testing.expectEqualStrings("01234567895678956789", cb.read());
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,894 @@
const std = @import("../../std.zig");
const flate = std.compress.flate;
const Container = flate.Container;
const Token = @import("Token.zig");
const testing = std.testing;
const Decompress = @This();
const Writer = std.io.Writer;
const Reader = std.io.Reader;
input: *Reader,
reader: Reader,
/// Hashes, produces checksum, of uncompressed data for gzip/zlib footer.
hasher: Container.Hasher,
lit_dec: LiteralDecoder,
dst_dec: DistanceDecoder,
final_block: bool,
state: State,
read_err: ?Error,
const BlockType = enum(u2) {
stored = 0,
fixed = 1,
dynamic = 2,
};
const State = union(enum) {
protocol_header,
block_header,
stored_block: u16,
fixed_block,
dynamic_block,
protocol_footer,
end,
};
pub const Error = Container.Error || error{
InvalidCode,
InvalidMatch,
InvalidBlockType,
WrongStoredBlockNlen,
InvalidDynamicBlockHeader,
EndOfStream,
ReadFailed,
OversubscribedHuffmanTree,
IncompleteHuffmanTree,
MissingEndOfBlockCode,
};
pub fn init(input: *Reader, container: Container, buffer: []u8) Decompress {
return .{
.reader = .{
// TODO populate discard so that when an amount is discarded that
// includes an entire frame, skip decoding that frame.
.vtable = &.{ .stream = stream },
.buffer = buffer,
.seek = 0,
.end = 0,
},
.input = input,
.hasher = .init(container),
.lit_dec = .{},
.dst_dec = .{},
.final_block = false,
.state = .protocol_header,
.read_err = null,
};
}
fn decodeLength(self: *Decompress, code: u8) !u16 {
if (code > 28) return error.InvalidCode;
const ml = Token.matchLength(code);
return if (ml.extra_bits == 0) // 0 - 5 extra bits
ml.base
else
ml.base + try self.takeNBitsBuffered(ml.extra_bits);
}
fn decodeDistance(self: *Decompress, code: u8) !u16 {
if (code > 29) return error.InvalidCode;
const md = Token.matchDistance(code);
return if (md.extra_bits == 0) // 0 - 13 extra bits
md.base
else
md.base + try self.takeNBitsBuffered(md.extra_bits);
}
// Decode code length symbol to code length. Writes decoded length into
// lens slice starting at position pos. Returns number of positions
// advanced.
fn dynamicCodeLength(self: *Decompress, code: u16, lens: []u4, pos: usize) !usize {
if (pos >= lens.len)
return error.InvalidDynamicBlockHeader;
switch (code) {
0...15 => {
// Represent code lengths of 0 - 15
lens[pos] = @intCast(code);
return 1;
},
16 => {
// Copy the previous code length 3 - 6 times.
// The next 2 bits indicate repeat length
const n: u8 = @as(u8, try self.takeBits(u2)) + 3;
if (pos == 0 or pos + n > lens.len)
return error.InvalidDynamicBlockHeader;
for (0..n) |i| {
lens[pos + i] = lens[pos + i - 1];
}
return n;
},
// Repeat a code length of 0 for 3 - 10 times. (3 bits of length)
17 => return @as(u8, try self.takeBits(u3)) + 3,
// Repeat a code length of 0 for 11 - 138 times (7 bits of length)
18 => return @as(u8, try self.takeBits(u7)) + 11,
else => return error.InvalidDynamicBlockHeader,
}
}
// Peek 15 bits from bits reader (maximum code len is 15 bits). Use
// decoder to find symbol for that code. We then know how many bits is
// used. Shift bit reader for that much bits, those bits are used. And
// return symbol.
fn decodeSymbol(self: *Decompress, decoder: anytype) !Symbol {
const sym = try decoder.find(try self.peekBitsReverseBuffered(u15));
try self.shiftBits(sym.code_bits);
return sym;
}
pub fn stream(r: *Reader, w: *Writer, limit: std.io.Limit) Reader.StreamError!usize {
const d: *Decompress = @alignCast(@fieldParentPtr("reader", r));
return readInner(d, w, limit) catch |err| switch (err) {
error.EndOfStream => return error.EndOfStream,
error.WriteFailed => return error.WriteFailed,
else => |e| {
// In the event of an error, state is unmodified so that it can be
// better used to diagnose the failure.
d.read_err = e;
return error.ReadFailed;
},
};
}
fn readInner(d: *Decompress, w: *Writer, limit: std.io.Limit) (Error || Reader.StreamError)!usize {
const in = d.input;
sw: switch (d.state) {
.protocol_header => switch (d.hasher.container()) {
.gzip => {
const Header = extern struct {
magic: u16 align(1),
method: u8,
flags: packed struct(u8) {
text: bool,
hcrc: bool,
extra: bool,
name: bool,
comment: bool,
reserved: u3,
},
mtime: u32 align(1),
xfl: u8,
os: u8,
};
const header = try in.takeStruct(Header, .little);
if (header.magic != 0x8b1f or header.method != 0x08)
return error.BadGzipHeader;
if (header.flags.extra) {
const extra_len = try in.takeInt(u16, .little);
try in.discardAll(extra_len);
}
if (header.flags.name) {
_ = try in.discardDelimiterInclusive(0);
}
if (header.flags.comment) {
_ = try in.discardDelimiterInclusive(0);
}
if (header.flags.hcrc) {
try in.discardAll(2);
}
continue :sw .block_header;
},
.zlib => {
const Header = extern struct {
cmf: packed struct(u8) {
cm: u4,
cinfo: u4,
},
flg: u8,
};
const header = try in.takeStruct(Header);
if (header.cmf.cm != 8 or header.cmf.cinfo > 7) return error.BadZlibHeader;
continue :sw .block_header;
},
.raw => continue :sw .block_header,
},
.block_header => {
d.final_block = (try d.takeBits(u1)) != 0;
const block_type = try d.takeBits(BlockType);
switch (block_type) {
.stored => {
d.alignBitsToByte(); // skip padding until byte boundary
// everything after this is byte aligned in stored block
const len = try in.takeInt(u16, .little);
const nlen = try in.takeInt(u16, .little);
if (len != ~nlen) return error.WrongStoredBlockNlen;
continue :sw .{ .stored_block = len };
},
.fixed => continue :sw .fixed_block,
.dynamic => {
const hlit: u16 = @as(u16, try d.takeBits(u5)) + 257; // number of ll code entries present - 257
const hdist: u16 = @as(u16, try d.takeBits(u5)) + 1; // number of distance code entries - 1
const hclen: u8 = @as(u8, try d.takeBits(u4)) + 4; // hclen + 4 code lengths are encoded
if (hlit > 286 or hdist > 30)
return error.InvalidDynamicBlockHeader;
// lengths for code lengths
var cl_lens = [_]u4{0} ** 19;
for (0..hclen) |i| {
cl_lens[flate.huffman.codegen_order[i]] = try d.takeBits(u3);
}
var cl_dec: CodegenDecoder = .{};
try cl_dec.generate(&cl_lens);
// decoded code lengths
var dec_lens = [_]u4{0} ** (286 + 30);
var pos: usize = 0;
while (pos < hlit + hdist) {
const sym = try cl_dec.find(try d.peekBitsReverse(u7));
try d.shiftBits(sym.code_bits);
pos += try d.dynamicCodeLength(sym.symbol, &dec_lens, pos);
}
if (pos > hlit + hdist) {
return error.InvalidDynamicBlockHeader;
}
// literal code lengths to literal decoder
try d.lit_dec.generate(dec_lens[0..hlit]);
// distance code lengths to distance decoder
try d.dst_dec.generate(dec_lens[hlit .. hlit + hdist]);
continue :sw .dynamic_block;
},
}
},
.stored_block => |remaining_len| {
const out = try w.writableSliceGreedyPreserve(flate.history_len, 1);
const limited_out = limit.min(.limited(remaining_len)).slice(out);
const n = try d.input.readVec(&.{limited_out});
if (remaining_len - n == 0) {
d.state = if (d.final_block) .protocol_footer else .block_header;
} else {
d.state = .{ .stored_block = @intCast(remaining_len - n) };
}
w.advance(n);
return n;
},
.fixed_block => {
const start = w.count;
while (@intFromEnum(limit) > w.count - start) {
const code = try d.readFixedCode();
switch (code) {
0...255 => try w.writeBytePreserve(flate.history_len, @intCast(code)),
256 => {
d.state = if (d.final_block) .protocol_footer else .block_header;
return w.count - start;
},
257...285 => {
// Handles fixed block non literal (length) code.
// Length code is followed by 5 bits of distance code.
const length = try d.decodeLength(@intCast(code - 257));
const distance = try d.decodeDistance(try d.takeBitsReverseBuffered(u5));
try writeMatch(w, length, distance);
},
else => return error.InvalidCode,
}
}
d.state = .fixed_block;
return w.count - start;
},
.dynamic_block => {
// In larger archives most blocks are usually dynamic, so decompression
// performance depends on this logic.
const start = w.count;
while (@intFromEnum(limit) > w.count - start) {
const sym = try d.decodeSymbol(&d.lit_dec);
switch (sym.kind) {
.literal => try w.writeBytePreserve(flate.history_len, sym.symbol),
.match => {
// Decode match backreference <length, distance>
const length = try d.decodeLength(sym.symbol);
const dsm = try d.decodeSymbol(&d.dst_dec);
const distance = try d.decodeDistance(dsm.symbol);
try writeMatch(w, length, distance);
},
.end_of_block => {
d.state = if (d.final_block) .protocol_footer else .block_header;
return w.count - start;
},
}
}
d.state = .dynamic_block;
return w.count - start;
},
.protocol_footer => {
d.alignBitsToByte();
switch (d.hasher) {
.gzip => |*gzip| {
if (try in.takeInt(u32, .little) != gzip.crc.final()) return error.WrongGzipChecksum;
if (try in.takeInt(u32, .little) != gzip.count) return error.WrongGzipSize;
},
.zlib => |*zlib| {
const chksum: u32 = @byteSwap(zlib.final());
if (try in.takeInt(u32, .big) != chksum) return error.WrongZlibChecksum;
},
.raw => {},
}
d.state = .end;
return 0;
},
.end => return error.EndOfStream,
}
}
/// Write match (back-reference to the same data slice) starting at `distance`
/// back from current write position, and `length` of bytes.
fn writeMatch(bw: *Writer, length: u16, distance: u16) !void {
_ = bw;
_ = length;
_ = distance;
@panic("TODO");
}
fn takeBits(d: *Decompress, comptime T: type) !T {
_ = d;
@panic("TODO");
}
fn takeBitsReverseBuffered(d: *Decompress, comptime T: type) !T {
_ = d;
@panic("TODO");
}
fn takeNBitsBuffered(d: *Decompress, n: u4) !u16 {
_ = d;
_ = n;
@panic("TODO");
}
fn peekBitsReverse(d: *Decompress, comptime T: type) !T {
_ = d;
@panic("TODO");
}
fn peekBitsReverseBuffered(d: *Decompress, comptime T: type) !T {
_ = d;
@panic("TODO");
}
fn alignBitsToByte(d: *Decompress) void {
_ = d;
@panic("TODO");
}
fn shiftBits(d: *Decompress, n: u6) !void {
_ = d;
_ = n;
@panic("TODO");
}
fn readFixedCode(d: *Decompress) !u16 {
_ = d;
@panic("TODO");
}
pub const Symbol = packed struct {
pub const Kind = enum(u2) {
literal,
end_of_block,
match,
};
symbol: u8 = 0, // symbol from alphabet
code_bits: u4 = 0, // number of bits in code 0-15
kind: Kind = .literal,
code: u16 = 0, // huffman code of the symbol
next: u16 = 0, // pointer to the next symbol in linked list
// it is safe to use 0 as null pointer, when sorted 0 has shortest code and fits into lookup
// Sorting less than function.
pub fn asc(_: void, a: Symbol, b: Symbol) bool {
if (a.code_bits == b.code_bits) {
if (a.kind == b.kind) {
return a.symbol < b.symbol;
}
return @intFromEnum(a.kind) < @intFromEnum(b.kind);
}
return a.code_bits < b.code_bits;
}
};
pub const LiteralDecoder = HuffmanDecoder(286, 15, 9);
pub const DistanceDecoder = HuffmanDecoder(30, 15, 9);
pub const CodegenDecoder = HuffmanDecoder(19, 7, 7);
/// Creates huffman tree codes from list of code lengths (in `build`).
///
/// `find` then finds symbol for code bits. Code can be any length between 1 and
/// 15 bits. When calling `find` we don't know how many bits will be used to
/// find symbol. When symbol is returned it has code_bits field which defines
/// how much we should advance in bit stream.
///
/// Lookup table is used to map 15 bit int to symbol. Same symbol is written
/// many times in this table; 32K places for 286 (at most) symbols.
/// Small lookup table is optimization for faster search.
/// It is variation of the algorithm explained in [zlib](https://github.com/madler/zlib/blob/643e17b7498d12ab8d15565662880579692f769d/doc/algorithm.txt#L92)
/// with difference that we here use statically allocated arrays.
///
fn HuffmanDecoder(
comptime alphabet_size: u16,
comptime max_code_bits: u4,
comptime lookup_bits: u4,
) type {
const lookup_shift = max_code_bits - lookup_bits;
return struct {
// all symbols in alaphabet, sorted by code_len, symbol
symbols: [alphabet_size]Symbol = undefined,
// lookup table code -> symbol
lookup: [1 << lookup_bits]Symbol = undefined,
const Self = @This();
/// Generates symbols and lookup tables from list of code lens for each symbol.
pub fn generate(self: *Self, lens: []const u4) !void {
try checkCompleteness(lens);
// init alphabet with code_bits
for (self.symbols, 0..) |_, i| {
const cb: u4 = if (i < lens.len) lens[i] else 0;
self.symbols[i] = if (i < 256)
.{ .kind = .literal, .symbol = @intCast(i), .code_bits = cb }
else if (i == 256)
.{ .kind = .end_of_block, .symbol = 0xff, .code_bits = cb }
else
.{ .kind = .match, .symbol = @intCast(i - 257), .code_bits = cb };
}
std.sort.heap(Symbol, &self.symbols, {}, Symbol.asc);
// reset lookup table
for (0..self.lookup.len) |i| {
self.lookup[i] = .{};
}
// assign code to symbols
// reference: https://youtu.be/9_YEGLe33NA?list=PLU4IQLU9e_OrY8oASHx0u3IXAL9TOdidm&t=2639
var code: u16 = 0;
var idx: u16 = 0;
for (&self.symbols, 0..) |*sym, pos| {
if (sym.code_bits == 0) continue; // skip unused
sym.code = code;
const next_code = code + (@as(u16, 1) << (max_code_bits - sym.code_bits));
const next_idx = next_code >> lookup_shift;
if (next_idx > self.lookup.len or idx >= self.lookup.len) break;
if (sym.code_bits <= lookup_bits) {
// fill small lookup table
for (idx..next_idx) |j|
self.lookup[j] = sym.*;
} else {
// insert into linked table starting at root
const root = &self.lookup[idx];
const root_next = root.next;
root.next = @intCast(pos);
sym.next = root_next;
}
idx = next_idx;
code = next_code;
}
}
/// Given the list of code lengths check that it represents a canonical
/// Huffman code for n symbols.
///
/// Reference: https://github.com/madler/zlib/blob/5c42a230b7b468dff011f444161c0145b5efae59/contrib/puff/puff.c#L340
fn checkCompleteness(lens: []const u4) !void {
if (alphabet_size == 286)
if (lens[256] == 0) return error.MissingEndOfBlockCode;
var count = [_]u16{0} ** (@as(usize, max_code_bits) + 1);
var max: usize = 0;
for (lens) |n| {
if (n == 0) continue;
if (n > max) max = n;
count[n] += 1;
}
if (max == 0) // empty tree
return;
// check for an over-subscribed or incomplete set of lengths
var left: usize = 1; // one possible code of zero length
for (1..count.len) |len| {
left <<= 1; // one more bit, double codes left
if (count[len] > left)
return error.OversubscribedHuffmanTree;
left -= count[len]; // deduct count from possible codes
}
if (left > 0) { // left > 0 means incomplete
// incomplete code ok only for single length 1 code
if (max_code_bits > 7 and max == count[0] + count[1]) return;
return error.IncompleteHuffmanTree;
}
}
/// Finds symbol for lookup table code.
pub fn find(self: *Self, code: u16) !Symbol {
// try to find in lookup table
const idx = code >> lookup_shift;
const sym = self.lookup[idx];
if (sym.code_bits != 0) return sym;
// if not use linked list of symbols with same prefix
return self.findLinked(code, sym.next);
}
inline fn findLinked(self: *Self, code: u16, start: u16) !Symbol {
var pos = start;
while (pos > 0) {
const sym = self.symbols[pos];
const shift = max_code_bits - sym.code_bits;
// compare code_bits number of upper bits
if ((code ^ sym.code) >> shift == 0) return sym;
pos = sym.next;
}
return error.InvalidCode;
}
};
}
test "init/find" {
// example data from: https://youtu.be/SJPvNi4HrWQ?t=8423
const code_lens = [_]u4{ 4, 3, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 3, 2 };
var h: CodegenDecoder = .{};
try h.generate(&code_lens);
const expected = [_]struct {
sym: Symbol,
code: u16,
}{
.{
.code = 0b00_00000,
.sym = .{ .symbol = 3, .code_bits = 2 },
},
.{
.code = 0b01_00000,
.sym = .{ .symbol = 18, .code_bits = 2 },
},
.{
.code = 0b100_0000,
.sym = .{ .symbol = 1, .code_bits = 3 },
},
.{
.code = 0b101_0000,
.sym = .{ .symbol = 4, .code_bits = 3 },
},
.{
.code = 0b110_0000,
.sym = .{ .symbol = 17, .code_bits = 3 },
},
.{
.code = 0b1110_000,
.sym = .{ .symbol = 0, .code_bits = 4 },
},
.{
.code = 0b1111_000,
.sym = .{ .symbol = 16, .code_bits = 4 },
},
};
// unused symbols
for (0..12) |i| {
try testing.expectEqual(0, h.symbols[i].code_bits);
}
// used, from index 12
for (expected, 12..) |e, i| {
try testing.expectEqual(e.sym.symbol, h.symbols[i].symbol);
try testing.expectEqual(e.sym.code_bits, h.symbols[i].code_bits);
const sym_from_code = try h.find(e.code);
try testing.expectEqual(e.sym.symbol, sym_from_code.symbol);
}
// All possible codes for each symbol.
// Lookup table has 126 elements, to cover all possible 7 bit codes.
for (0b0000_000..0b0100_000) |c| // 0..32 (32)
try testing.expectEqual(3, (try h.find(@intCast(c))).symbol);
for (0b0100_000..0b1000_000) |c| // 32..64 (32)
try testing.expectEqual(18, (try h.find(@intCast(c))).symbol);
for (0b1000_000..0b1010_000) |c| // 64..80 (16)
try testing.expectEqual(1, (try h.find(@intCast(c))).symbol);
for (0b1010_000..0b1100_000) |c| // 80..96 (16)
try testing.expectEqual(4, (try h.find(@intCast(c))).symbol);
for (0b1100_000..0b1110_000) |c| // 96..112 (16)
try testing.expectEqual(17, (try h.find(@intCast(c))).symbol);
for (0b1110_000..0b1111_000) |c| // 112..120 (8)
try testing.expectEqual(0, (try h.find(@intCast(c))).symbol);
for (0b1111_000..0b1_0000_000) |c| // 120...128 (8)
try testing.expectEqual(16, (try h.find(@intCast(c))).symbol);
}
test "encode/decode literals" {
const LiteralEncoder = std.compress.flate.Compress.LiteralEncoder;
for (1..286) |j| { // for all different number of codes
var enc: LiteralEncoder = .{};
// create frequencies
var freq = [_]u16{0} ** 286;
freq[256] = 1; // ensure we have end of block code
for (&freq, 1..) |*f, i| {
if (i % j == 0)
f.* = @intCast(i);
}
// encoder from frequencies
enc.generate(&freq, 15);
// get code_lens from encoder
var code_lens = [_]u4{0} ** 286;
for (code_lens, 0..) |_, i| {
code_lens[i] = @intCast(enc.codes[i].len);
}
// generate decoder from code lens
var dec: LiteralDecoder = .{};
try dec.generate(&code_lens);
// expect decoder code to match original encoder code
for (dec.symbols) |s| {
if (s.code_bits == 0) continue;
const c_code: u16 = @bitReverse(@as(u15, @intCast(s.code)));
const symbol: u16 = switch (s.kind) {
.literal => s.symbol,
.end_of_block => 256,
.match => @as(u16, s.symbol) + 257,
};
const c = enc.codes[symbol];
try testing.expect(c.code == c_code);
}
// find each symbol by code
for (enc.codes) |c| {
if (c.len == 0) continue;
const s_code: u15 = @bitReverse(@as(u15, @intCast(c.code)));
const s = try dec.find(s_code);
try testing.expect(s.code == s_code);
try testing.expect(s.code_bits == c.len);
}
}
}
test "decompress" {
const cases = [_]struct {
in: []const u8,
out: []const u8,
}{
// non compressed block (type 0)
.{
.in = &[_]u8{
0b0000_0001, 0b0000_1100, 0x00, 0b1111_0011, 0xff, // deflate fixed buffer header len, nlen
'H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', 0x0a, // non compressed data
},
.out = "Hello world\n",
},
// fixed code block (type 1)
.{
.in = &[_]u8{
0xf3, 0x48, 0xcd, 0xc9, 0xc9, 0x57, 0x28, 0xcf, // deflate data block type 1
0x2f, 0xca, 0x49, 0xe1, 0x02, 0x00,
},
.out = "Hello world\n",
},
// dynamic block (type 2)
.{
.in = &[_]u8{
0x3d, 0xc6, 0x39, 0x11, 0x00, 0x00, 0x0c, 0x02, // deflate data block type 2
0x30, 0x2b, 0xb5, 0x52, 0x1e, 0xff, 0x96, 0x38,
0x16, 0x96, 0x5c, 0x1e, 0x94, 0xcb, 0x6d, 0x01,
},
.out = "ABCDEABCD ABCDEABCD",
},
};
for (cases) |c| {
var fb: Reader = .fixed(c.in);
var aw: Writer.Allocating = .init(testing.allocator);
defer aw.deinit();
var decompress: Decompress = .init(&fb, .raw, &.{});
const r = &decompress.reader;
_ = try r.streamRemaining(&aw.writer);
try testing.expectEqualStrings(c.out, aw.getWritten());
}
}
test "gzip decompress" {
const cases = [_]struct {
in: []const u8,
out: []const u8,
}{
// non compressed block (type 0)
.{
.in = &[_]u8{
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, // gzip header (10 bytes)
0b0000_0001, 0b0000_1100, 0x00, 0b1111_0011, 0xff, // deflate fixed buffer header len, nlen
'H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', 0x0a, // non compressed data
0xd5, 0xe0, 0x39, 0xb7, // gzip footer: checksum
0x0c, 0x00, 0x00, 0x00, // gzip footer: size
},
.out = "Hello world\n",
},
// fixed code block (type 1)
.{
.in = &[_]u8{
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x03, // gzip header (10 bytes)
0xf3, 0x48, 0xcd, 0xc9, 0xc9, 0x57, 0x28, 0xcf, // deflate data block type 1
0x2f, 0xca, 0x49, 0xe1, 0x02, 0x00,
0xd5, 0xe0, 0x39, 0xb7, 0x0c, 0x00, 0x00, 0x00, // gzip footer (chksum, len)
},
.out = "Hello world\n",
},
// dynamic block (type 2)
.{
.in = &[_]u8{
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, // gzip header (10 bytes)
0x3d, 0xc6, 0x39, 0x11, 0x00, 0x00, 0x0c, 0x02, // deflate data block type 2
0x30, 0x2b, 0xb5, 0x52, 0x1e, 0xff, 0x96, 0x38,
0x16, 0x96, 0x5c, 0x1e, 0x94, 0xcb, 0x6d, 0x01,
0x17, 0x1c, 0x39, 0xb4, 0x13, 0x00, 0x00, 0x00, // gzip footer (chksum, len)
},
.out = "ABCDEABCD ABCDEABCD",
},
// gzip header with name
.{
.in = &[_]u8{
0x1f, 0x8b, 0x08, 0x08, 0xe5, 0x70, 0xb1, 0x65, 0x00, 0x03, 0x68, 0x65, 0x6c, 0x6c, 0x6f, 0x2e,
0x74, 0x78, 0x74, 0x00, 0xf3, 0x48, 0xcd, 0xc9, 0xc9, 0x57, 0x28, 0xcf, 0x2f, 0xca, 0x49, 0xe1,
0x02, 0x00, 0xd5, 0xe0, 0x39, 0xb7, 0x0c, 0x00, 0x00, 0x00,
},
.out = "Hello world\n",
},
};
for (cases) |c| {
var fb: Reader = .fixed(c.in);
var aw: Writer.Allocating = .init(testing.allocator);
defer aw.deinit();
var decompress: Decompress = .init(&fb, .gzip, &.{});
const r = &decompress.reader;
_ = try r.streamRemaining(&aw.writer);
try testing.expectEqualStrings(c.out, aw.getWritten());
}
}
test "zlib decompress" {
const cases = [_]struct {
in: []const u8,
out: []const u8,
}{
// non compressed block (type 0)
.{
.in = &[_]u8{
0x78, 0b10_0_11100, // zlib header (2 bytes)
0b0000_0001, 0b0000_1100, 0x00, 0b1111_0011, 0xff, // deflate fixed buffer header len, nlen
'H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', 0x0a, // non compressed data
0x1c, 0xf2, 0x04, 0x47, // zlib footer: checksum
},
.out = "Hello world\n",
},
};
for (cases) |c| {
var fb: Reader = .fixed(c.in);
var aw: Writer.Allocating = .init(testing.allocator);
defer aw.deinit();
var decompress: Decompress = .init(&fb, .zlib, &.{});
const r = &decompress.reader;
_ = try r.streamRemaining(&aw.writer);
try testing.expectEqualStrings(c.out, aw.getWritten());
}
}
test "fuzzing tests" {
const cases = [_]struct {
input: []const u8,
out: []const u8 = "",
err: ?anyerror = null,
}{
.{ .input = "deflate-stream", .out = @embedFile("testdata/fuzz/deflate-stream.expect") }, // 0
.{ .input = "empty-distance-alphabet01" },
.{ .input = "empty-distance-alphabet02" },
.{ .input = "end-of-stream", .err = error.EndOfStream },
.{ .input = "invalid-distance", .err = error.InvalidMatch },
.{ .input = "invalid-tree01", .err = error.IncompleteHuffmanTree }, // 5
.{ .input = "invalid-tree02", .err = error.IncompleteHuffmanTree },
.{ .input = "invalid-tree03", .err = error.IncompleteHuffmanTree },
.{ .input = "lengths-overflow", .err = error.InvalidDynamicBlockHeader },
.{ .input = "out-of-codes", .err = error.InvalidCode },
.{ .input = "puff01", .err = error.WrongStoredBlockNlen }, // 10
.{ .input = "puff02", .err = error.EndOfStream },
.{ .input = "puff03", .out = &[_]u8{0xa} },
.{ .input = "puff04", .err = error.InvalidCode },
.{ .input = "puff05", .err = error.EndOfStream },
.{ .input = "puff06", .err = error.EndOfStream },
.{ .input = "puff08", .err = error.InvalidCode },
.{ .input = "puff09", .out = "P" },
.{ .input = "puff10", .err = error.InvalidCode },
.{ .input = "puff11", .err = error.InvalidMatch },
.{ .input = "puff12", .err = error.InvalidDynamicBlockHeader }, // 20
.{ .input = "puff13", .err = error.IncompleteHuffmanTree },
.{ .input = "puff14", .err = error.EndOfStream },
.{ .input = "puff15", .err = error.IncompleteHuffmanTree },
.{ .input = "puff16", .err = error.InvalidDynamicBlockHeader },
.{ .input = "puff17", .err = error.MissingEndOfBlockCode }, // 25
.{ .input = "fuzz1", .err = error.InvalidDynamicBlockHeader },
.{ .input = "fuzz2", .err = error.InvalidDynamicBlockHeader },
.{ .input = "fuzz3", .err = error.InvalidMatch },
.{ .input = "fuzz4", .err = error.OversubscribedHuffmanTree },
.{ .input = "puff18", .err = error.OversubscribedHuffmanTree }, // 30
.{ .input = "puff19", .err = error.OversubscribedHuffmanTree },
.{ .input = "puff20", .err = error.OversubscribedHuffmanTree },
.{ .input = "puff21", .err = error.OversubscribedHuffmanTree },
.{ .input = "puff22", .err = error.OversubscribedHuffmanTree },
.{ .input = "puff23", .err = error.OversubscribedHuffmanTree }, // 35
.{ .input = "puff24", .err = error.IncompleteHuffmanTree },
.{ .input = "puff25", .err = error.OversubscribedHuffmanTree },
.{ .input = "puff26", .err = error.InvalidDynamicBlockHeader },
.{ .input = "puff27", .err = error.InvalidDynamicBlockHeader },
};
inline for (cases, 0..) |c, case_no| {
var in: Reader = .fixed(@embedFile("testdata/fuzz/" ++ c.input ++ ".input"));
var aw: Writer.Allocating = .init(testing.allocator);
defer aw.deinit();
errdefer std.debug.print("test case failed {}\n", .{case_no});
var decompress: Decompress = .init(&in, .raw, &.{});
const r = &decompress.reader;
if (c.err) |expected_err| {
try testing.expectError(error.ReadFailed, r.streamRemaining(&aw.writer));
try testing.expectError(expected_err, decompress.read_err.?);
} else {
_ = try r.streamRemaining(&aw.writer);
try testing.expectEqualStrings(c.out, aw.getWritten());
}
}
}
test "bug 18966" {
const input = @embedFile("testdata/fuzz/bug_18966.input");
const expect = @embedFile("testdata/fuzz/bug_18966.expect");
var in: Reader = .fixed(input);
var aw: Writer.Allocating = .init(testing.allocator);
defer aw.deinit();
var decompress: Decompress = .init(&in, .gzip, &.{});
const r = &decompress.reader;
_ = try r.streamRemaining(&aw.writer);
try testing.expectEqualStrings(expect, aw.getWritten());
}
test "reading into empty buffer" {
// Inspired by https://github.com/ziglang/zig/issues/19895
const input = &[_]u8{
0b0000_0001, 0b0000_1100, 0x00, 0b1111_0011, 0xff, // deflate fixed buffer header len, nlen
'H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', 0x0a, // non compressed data
};
var in: Reader = .fixed(input);
var decomp: Decompress = .init(&in, .raw, &.{});
const r = &decomp.reader;
var buf: [0]u8 = undefined;
try testing.expectEqual(0, try r.readVec(&.{&buf}));
}

View File

@ -5,22 +5,22 @@
const std = @import("std");
const testing = std.testing;
const expect = testing.expect;
const consts = @import("consts.zig");
const flate = @import("../flate.zig");
const Self = @This();
const Lookup = @This();
const prime4 = 0x9E3779B1; // 4 bytes prime number 2654435761
const chain_len = 2 * consts.history.len;
const chain_len = 2 * flate.history_len;
// Maps hash => first position
head: [consts.lookup.len]u16 = [_]u16{0} ** consts.lookup.len,
head: [flate.lookup.len]u16 = [_]u16{0} ** flate.lookup.len,
// Maps position => previous positions for the same hash value
chain: [chain_len]u16 = [_]u16{0} ** (chain_len),
// Calculates hash of the 4 bytes from data.
// Inserts `pos` position of that hash in the lookup tables.
// Returns previous location with the same hash value.
pub fn add(self: *Self, data: []const u8, pos: u16) u16 {
pub fn add(self: *Lookup, data: []const u8, pos: u16) u16 {
if (data.len < 4) return 0;
const h = hash(data[0..4]);
return self.set(h, pos);
@ -28,11 +28,11 @@ pub fn add(self: *Self, data: []const u8, pos: u16) u16 {
// Returns previous location with the same hash value given the current
// position.
pub fn prev(self: *Self, pos: u16) u16 {
pub fn prev(self: *Lookup, pos: u16) u16 {
return self.chain[pos];
}
fn set(self: *Self, h: u32, pos: u16) u16 {
fn set(self: *Lookup, h: u32, pos: u16) u16 {
const p = self.head[h];
self.head[h] = pos;
self.chain[pos] = p;
@ -40,7 +40,7 @@ fn set(self: *Self, h: u32, pos: u16) u16 {
}
// Slide all positions in head and chain for `n`
pub fn slide(self: *Self, n: u16) void {
pub fn slide(self: *Lookup, n: u16) void {
for (&self.head) |*v| {
v.* -|= n;
}
@ -52,8 +52,8 @@ pub fn slide(self: *Self, n: u16) void {
// Add `len` 4 bytes hashes from `data` into lookup.
// Position of the first byte is `pos`.
pub fn bulkAdd(self: *Self, data: []const u8, len: u16, pos: u16) void {
if (len == 0 or data.len < consts.match.min_length) {
pub fn bulkAdd(self: *Lookup, data: []const u8, len: u16, pos: u16) void {
if (len == 0 or data.len < flate.match.min_length) {
return;
}
var hb =
@ -80,7 +80,7 @@ fn hash(b: *const [4]u8) u32 {
}
fn hashu(v: u32) u32 {
return @intCast((v *% prime4) >> consts.lookup.shift);
return @intCast((v *% prime4) >> flate.lookup.shift);
}
test add {
@ -91,7 +91,7 @@ test add {
0x01, 0x02, 0x03,
};
var h: Self = .{};
var h: Lookup = .{};
for (data, 0..) |_, i| {
const p = h.add(data[i..], @intCast(i));
if (i >= 8 and i < 24) {
@ -101,7 +101,7 @@ test add {
}
}
const v = Self.hash(data[2 .. 2 + 4]);
const v = Lookup.hash(data[2 .. 2 + 4]);
try expect(h.head[v] == 2 + 16);
try expect(h.chain[2 + 16] == 2 + 8);
try expect(h.chain[2 + 8] == 2);
@ -111,13 +111,13 @@ test bulkAdd {
const data = "Lorem ipsum dolor sit amet, consectetur adipiscing elit.";
// one by one
var h: Self = .{};
var h: Lookup = .{};
for (data, 0..) |_, i| {
_ = h.add(data[i..], @intCast(i));
}
// in bulk
var bh: Self = .{};
var bh: Lookup = .{};
bh.bulkAdd(data, data.len, 0);
try testing.expectEqualSlices(u16, &h.head, &bh.head);

View File

@ -1,160 +0,0 @@
//! Used in deflate (compression), holds uncompressed data form which Tokens are
//! produces. In combination with Lookup it is used to find matches in history data.
//!
const std = @import("std");
const consts = @import("consts.zig");
const expect = testing.expect;
const assert = std.debug.assert;
const testing = std.testing;
const hist_len = consts.history.len;
const buffer_len = 2 * hist_len;
const min_lookahead = consts.match.min_length + consts.match.max_length;
const max_rp = buffer_len - min_lookahead;
const Self = @This();
buffer: [buffer_len]u8 = undefined,
wp: usize = 0, // write position
rp: usize = 0, // read position
fp: isize = 0, // last flush position, tokens are build from fp..rp
/// Returns number of bytes written, or 0 if buffer is full and need to slide.
pub fn write(self: *Self, buf: []const u8) usize {
if (self.rp >= max_rp) return 0; // need to slide
const n = @min(buf.len, buffer_len - self.wp);
@memcpy(self.buffer[self.wp .. self.wp + n], buf[0..n]);
self.wp += n;
return n;
}
/// Slide buffer for hist_len.
/// Drops old history, preserves between hist_len and hist_len - min_lookahead.
/// Returns number of bytes removed.
pub fn slide(self: *Self) u16 {
assert(self.rp >= max_rp and self.wp >= self.rp);
const n = self.wp - hist_len;
@memcpy(self.buffer[0..n], self.buffer[hist_len..self.wp]);
self.rp -= hist_len;
self.wp -= hist_len;
self.fp -= hist_len;
return @intCast(n);
}
/// Data from the current position (read position). Those part of the buffer is
/// not converted to tokens yet.
fn lookahead(self: *Self) []const u8 {
assert(self.wp >= self.rp);
return self.buffer[self.rp..self.wp];
}
/// Returns part of the lookahead buffer. If should_flush is set no lookahead is
/// preserved otherwise preserves enough data for the longest match. Returns
/// null if there is not enough data.
pub fn activeLookahead(self: *Self, should_flush: bool) ?[]const u8 {
const min: usize = if (should_flush) 0 else min_lookahead;
const lh = self.lookahead();
return if (lh.len > min) lh else null;
}
/// Advances read position, shrinks lookahead.
pub fn advance(self: *Self, n: u16) void {
assert(self.wp >= self.rp + n);
self.rp += n;
}
/// Returns writable part of the buffer, where new uncompressed data can be
/// written.
pub fn writable(self: *Self) []u8 {
return self.buffer[self.wp..];
}
/// Notification of what part of writable buffer is filled with data.
pub fn written(self: *Self, n: usize) void {
self.wp += n;
}
/// Finds match length between previous and current position.
/// Used in hot path!
pub fn match(self: *Self, prev_pos: u16, curr_pos: u16, min_len: u16) u16 {
const max_len: usize = @min(self.wp - curr_pos, consts.match.max_length);
// lookahead buffers from previous and current positions
const prev_lh = self.buffer[prev_pos..][0..max_len];
const curr_lh = self.buffer[curr_pos..][0..max_len];
// If we already have match (min_len > 0),
// test the first byte above previous len a[min_len] != b[min_len]
// and then all the bytes from that position to zero.
// That is likely positions to find difference than looping from first bytes.
var i: usize = min_len;
if (i > 0) {
if (max_len <= i) return 0;
while (true) {
if (prev_lh[i] != curr_lh[i]) return 0;
if (i == 0) break;
i -= 1;
}
i = min_len;
}
while (i < max_len) : (i += 1)
if (prev_lh[i] != curr_lh[i]) break;
return if (i >= consts.match.min_length) @intCast(i) else 0;
}
/// Current position of non-compressed data. Data before rp are already converted
/// to tokens.
pub fn pos(self: *Self) u16 {
return @intCast(self.rp);
}
/// Notification that token list is cleared.
pub fn flush(self: *Self) void {
self.fp = @intCast(self.rp);
}
/// Part of the buffer since last flush or null if there was slide in between (so
/// fp becomes negative).
pub fn tokensBuffer(self: *Self) ?[]const u8 {
assert(self.fp <= self.rp);
if (self.fp < 0) return null;
return self.buffer[@intCast(self.fp)..self.rp];
}
test match {
const data = "Blah blah blah blah blah!";
var win: Self = .{};
try expect(win.write(data) == data.len);
try expect(win.wp == data.len);
try expect(win.rp == 0);
// length between l symbols
try expect(win.match(1, 6, 0) == 18);
try expect(win.match(1, 11, 0) == 13);
try expect(win.match(1, 16, 0) == 8);
try expect(win.match(1, 21, 0) == 0);
// position 15 = "blah blah!"
// position 20 = "blah!"
try expect(win.match(15, 20, 0) == 4);
try expect(win.match(15, 20, 3) == 4);
try expect(win.match(15, 20, 4) == 0);
}
test slide {
var win: Self = .{};
win.wp = Self.buffer_len - 11;
win.rp = Self.buffer_len - 111;
win.buffer[win.rp] = 0xab;
try expect(win.lookahead().len == 100);
try expect(win.tokensBuffer().?.len == win.rp);
const n = win.slide();
try expect(n == 32757);
try expect(win.buffer[win.rp] == 0xab);
try expect(win.rp == Self.hist_len - 111);
try expect(win.wp == Self.hist_len - 11);
try expect(win.lookahead().len == 100);
try expect(win.tokensBuffer() == null);
}

View File

@ -6,7 +6,7 @@ const std = @import("std");
const assert = std.debug.assert;
const print = std.debug.print;
const expect = std.testing.expect;
const consts = @import("consts.zig").match;
const match = std.compress.flate.match;
const Token = @This();
@ -26,11 +26,11 @@ pub fn literal(t: Token) u8 {
}
pub fn distance(t: Token) u16 {
return @as(u16, t.dist) + consts.min_distance;
return @as(u16, t.dist) + match.min_distance;
}
pub fn length(t: Token) u16 {
return @as(u16, t.len_lit) + consts.base_length;
return @as(u16, t.len_lit) + match.base_length;
}
pub fn initLiteral(lit: u8) Token {
@ -40,12 +40,12 @@ pub fn initLiteral(lit: u8) Token {
// distance range 1 - 32768, stored in dist as 0 - 32767 (u15)
// length range 3 - 258, stored in len_lit as 0 - 255 (u8)
pub fn initMatch(dist: u16, len: u16) Token {
assert(len >= consts.min_length and len <= consts.max_length);
assert(dist >= consts.min_distance and dist <= consts.max_distance);
assert(len >= match.min_length and len <= match.max_length);
assert(dist >= match.min_distance and dist <= match.max_distance);
return .{
.kind = .match,
.dist = @intCast(dist - consts.min_distance),
.len_lit = @intCast(len - consts.base_length),
.dist = @intCast(dist - match.min_distance),
.len_lit = @intCast(len - match.base_length),
};
}

View File

@ -1,422 +0,0 @@
const std = @import("std");
const assert = std.debug.assert;
const testing = std.testing;
pub fn bitReader(comptime T: type, reader: anytype) BitReader(T, @TypeOf(reader)) {
return BitReader(T, @TypeOf(reader)).init(reader);
}
pub fn BitReader64(comptime ReaderType: type) type {
return BitReader(u64, ReaderType);
}
pub fn BitReader32(comptime ReaderType: type) type {
return BitReader(u32, ReaderType);
}
/// Bit reader used during inflate (decompression). Has internal buffer of 64
/// bits which shifts right after bits are consumed. Uses forward_reader to fill
/// that internal buffer when needed.
///
/// readF is the core function. Supports few different ways of getting bits
/// controlled by flags. In hot path we try to avoid checking whether we need to
/// fill buffer from forward_reader by calling fill in advance and readF with
/// buffered flag set.
///
pub fn BitReader(comptime T: type, comptime ReaderType: type) type {
assert(T == u32 or T == u64);
const t_bytes: usize = @sizeOf(T);
const Tshift = if (T == u64) u6 else u5;
return struct {
// Underlying reader used for filling internal bits buffer
forward_reader: ReaderType = undefined,
// Internal buffer of 64 bits
bits: T = 0,
// Number of bits in the buffer
nbits: u32 = 0,
const Self = @This();
pub const Error = ReaderType.Error || error{EndOfStream};
pub fn init(rdr: ReaderType) Self {
var self = Self{ .forward_reader = rdr };
self.fill(1) catch {};
return self;
}
/// Try to have `nice` bits are available in buffer. Reads from
/// forward reader if there is no `nice` bits in buffer. Returns error
/// if end of forward stream is reached and internal buffer is empty.
/// It will not error if less than `nice` bits are in buffer, only when
/// all bits are exhausted. During inflate we usually know what is the
/// maximum bits for the next step but usually that step will need less
/// bits to decode. So `nice` is not hard limit, it will just try to have
/// that number of bits available. If end of forward stream is reached
/// it may be some extra zero bits in buffer.
pub inline fn fill(self: *Self, nice: u6) !void {
if (self.nbits >= nice and nice != 0) {
return; // We have enough bits
}
// Read more bits from forward reader
// Number of empty bytes in bits, round nbits to whole bytes.
const empty_bytes =
@as(u8, if (self.nbits & 0x7 == 0) t_bytes else t_bytes - 1) - // 8 for 8, 16, 24..., 7 otherwise
(self.nbits >> 3); // 0 for 0-7, 1 for 8-16, ... same as / 8
var buf: [t_bytes]u8 = [_]u8{0} ** t_bytes;
const bytes_read = self.forward_reader.readAll(buf[0..empty_bytes]) catch 0;
if (bytes_read > 0) {
const u: T = std.mem.readInt(T, buf[0..t_bytes], .little);
self.bits |= u << @as(Tshift, @intCast(self.nbits));
self.nbits += 8 * @as(u8, @intCast(bytes_read));
return;
}
if (self.nbits == 0)
return error.EndOfStream;
}
/// Read exactly buf.len bytes into buf.
pub fn readAll(self: *Self, buf: []u8) !void {
assert(self.alignBits() == 0); // internal bits must be at byte boundary
// First read from internal bits buffer.
var n: usize = 0;
while (self.nbits > 0 and n < buf.len) {
buf[n] = try self.readF(u8, flag.buffered);
n += 1;
}
// Then use forward reader for all other bytes.
try self.forward_reader.readNoEof(buf[n..]);
}
pub const flag = struct {
pub const peek: u3 = 0b001; // dont advance internal buffer, just get bits, leave them in buffer
pub const buffered: u3 = 0b010; // assume that there is no need to fill, fill should be called before
pub const reverse: u3 = 0b100; // bit reverse read bits
};
/// Alias for readF(U, 0).
pub fn read(self: *Self, comptime U: type) !U {
return self.readF(U, 0);
}
/// Alias for readF with flag.peak set.
pub inline fn peekF(self: *Self, comptime U: type, comptime how: u3) !U {
return self.readF(U, how | flag.peek);
}
/// Read with flags provided.
pub fn readF(self: *Self, comptime U: type, comptime how: u3) !U {
if (U == T) {
assert(how == 0);
assert(self.alignBits() == 0);
try self.fill(@bitSizeOf(T));
if (self.nbits != @bitSizeOf(T)) return error.EndOfStream;
const v = self.bits;
self.nbits = 0;
self.bits = 0;
return v;
}
const n: Tshift = @bitSizeOf(U);
switch (how) {
0 => { // `normal` read
try self.fill(n); // ensure that there are n bits in the buffer
const u: U = @truncate(self.bits); // get n bits
try self.shift(n); // advance buffer for n
return u;
},
(flag.peek) => { // no shift, leave bits in the buffer
try self.fill(n);
return @truncate(self.bits);
},
flag.buffered => { // no fill, assume that buffer has enough bits
const u: U = @truncate(self.bits);
try self.shift(n);
return u;
},
(flag.reverse) => { // same as 0 with bit reverse
try self.fill(n);
const u: U = @truncate(self.bits);
try self.shift(n);
return @bitReverse(u);
},
(flag.peek | flag.reverse) => {
try self.fill(n);
return @bitReverse(@as(U, @truncate(self.bits)));
},
(flag.buffered | flag.reverse) => {
const u: U = @truncate(self.bits);
try self.shift(n);
return @bitReverse(u);
},
(flag.peek | flag.buffered) => {
return @truncate(self.bits);
},
(flag.peek | flag.buffered | flag.reverse) => {
return @bitReverse(@as(U, @truncate(self.bits)));
},
}
}
/// Read n number of bits.
/// Only buffered flag can be used in how.
pub fn readN(self: *Self, n: u4, comptime how: u3) !u16 {
switch (how) {
0 => {
try self.fill(n);
},
flag.buffered => {},
else => unreachable,
}
const mask: u16 = (@as(u16, 1) << n) - 1;
const u: u16 = @as(u16, @truncate(self.bits)) & mask;
try self.shift(n);
return u;
}
/// Advance buffer for n bits.
pub fn shift(self: *Self, n: Tshift) !void {
if (n > self.nbits) return error.EndOfStream;
self.bits >>= n;
self.nbits -= n;
}
/// Skip n bytes.
pub fn skipBytes(self: *Self, n: u16) !void {
for (0..n) |_| {
try self.fill(8);
try self.shift(8);
}
}
// Number of bits to align stream to the byte boundary.
fn alignBits(self: *Self) u3 {
return @intCast(self.nbits & 0x7);
}
/// Align stream to the byte boundary.
pub fn alignToByte(self: *Self) void {
const ab = self.alignBits();
if (ab > 0) self.shift(ab) catch unreachable;
}
/// Skip zero terminated string.
pub fn skipStringZ(self: *Self) !void {
while (true) {
if (try self.readF(u8, 0) == 0) break;
}
}
/// Read deflate fixed fixed code.
/// Reads first 7 bits, and then maybe 1 or 2 more to get full 7,8 or 9 bit code.
/// ref: https://datatracker.ietf.org/doc/html/rfc1951#page-12
/// Lit Value Bits Codes
/// --------- ---- -----
/// 0 - 143 8 00110000 through
/// 10111111
/// 144 - 255 9 110010000 through
/// 111111111
/// 256 - 279 7 0000000 through
/// 0010111
/// 280 - 287 8 11000000 through
/// 11000111
pub fn readFixedCode(self: *Self) !u16 {
try self.fill(7 + 2);
const code7 = try self.readF(u7, flag.buffered | flag.reverse);
if (code7 <= 0b0010_111) { // 7 bits, 256-279, codes 0000_000 - 0010_111
return @as(u16, code7) + 256;
} else if (code7 <= 0b1011_111) { // 8 bits, 0-143, codes 0011_0000 through 1011_1111
return (@as(u16, code7) << 1) + @as(u16, try self.readF(u1, flag.buffered)) - 0b0011_0000;
} else if (code7 <= 0b1100_011) { // 8 bit, 280-287, codes 1100_0000 - 1100_0111
return (@as(u16, code7 - 0b1100000) << 1) + try self.readF(u1, flag.buffered) + 280;
} else { // 9 bit, 144-255, codes 1_1001_0000 - 1_1111_1111
return (@as(u16, code7 - 0b1100_100) << 2) + @as(u16, try self.readF(u2, flag.buffered | flag.reverse)) + 144;
}
}
};
}
test "readF" {
var fbs = std.io.fixedBufferStream(&[_]u8{ 0xf3, 0x48, 0xcd, 0xc9, 0x00, 0x00 });
var br = bitReader(u64, fbs.reader());
const F = BitReader64(@TypeOf(fbs.reader())).flag;
try testing.expectEqual(@as(u8, 48), br.nbits);
try testing.expectEqual(@as(u64, 0xc9cd48f3), br.bits);
try testing.expect(try br.readF(u1, 0) == 0b0000_0001);
try testing.expect(try br.readF(u2, 0) == 0b0000_0001);
try testing.expectEqual(@as(u8, 48 - 3), br.nbits);
try testing.expectEqual(@as(u3, 5), br.alignBits());
try testing.expect(try br.readF(u8, F.peek) == 0b0001_1110);
try testing.expect(try br.readF(u9, F.peek) == 0b1_0001_1110);
try br.shift(9);
try testing.expectEqual(@as(u8, 36), br.nbits);
try testing.expectEqual(@as(u3, 4), br.alignBits());
try testing.expect(try br.readF(u4, 0) == 0b0100);
try testing.expectEqual(@as(u8, 32), br.nbits);
try testing.expectEqual(@as(u3, 0), br.alignBits());
try br.shift(1);
try testing.expectEqual(@as(u3, 7), br.alignBits());
try br.shift(1);
try testing.expectEqual(@as(u3, 6), br.alignBits());
br.alignToByte();
try testing.expectEqual(@as(u3, 0), br.alignBits());
try testing.expectEqual(@as(u64, 0xc9), br.bits);
try testing.expectEqual(@as(u16, 0x9), try br.readN(4, 0));
try testing.expectEqual(@as(u16, 0xc), try br.readN(4, 0));
}
test "read block type 1 data" {
inline for ([_]type{ u64, u32 }) |T| {
const data = [_]u8{
0xf3, 0x48, 0xcd, 0xc9, 0xc9, 0x57, 0x28, 0xcf, // deflate data block type 1
0x2f, 0xca, 0x49, 0xe1, 0x02, 0x00,
0x0c, 0x01, 0x02, 0x03, //
0xaa, 0xbb, 0xcc, 0xdd,
};
var fbs = std.io.fixedBufferStream(&data);
var br = bitReader(T, fbs.reader());
const F = BitReader(T, @TypeOf(fbs.reader())).flag;
try testing.expectEqual(@as(u1, 1), try br.readF(u1, 0)); // bfinal
try testing.expectEqual(@as(u2, 1), try br.readF(u2, 0)); // block_type
for ("Hello world\n") |c| {
try testing.expectEqual(@as(u8, c), try br.readF(u8, F.reverse) - 0x30);
}
try testing.expectEqual(@as(u7, 0), try br.readF(u7, 0)); // end of block
br.alignToByte();
try testing.expectEqual(@as(u32, 0x0302010c), try br.readF(u32, 0));
try testing.expectEqual(@as(u16, 0xbbaa), try br.readF(u16, 0));
try testing.expectEqual(@as(u16, 0xddcc), try br.readF(u16, 0));
}
}
test "shift/fill" {
const data = [_]u8{
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
};
var fbs = std.io.fixedBufferStream(&data);
var br = bitReader(u64, fbs.reader());
try testing.expectEqual(@as(u64, 0x08_07_06_05_04_03_02_01), br.bits);
try br.shift(8);
try testing.expectEqual(@as(u64, 0x00_08_07_06_05_04_03_02), br.bits);
try br.fill(60); // fill with 1 byte
try testing.expectEqual(@as(u64, 0x01_08_07_06_05_04_03_02), br.bits);
try br.shift(8 * 4 + 4);
try testing.expectEqual(@as(u64, 0x00_00_00_00_00_10_80_70), br.bits);
try br.fill(60); // fill with 4 bytes (shift by 4)
try testing.expectEqual(@as(u64, 0x00_50_40_30_20_10_80_70), br.bits);
try testing.expectEqual(@as(u8, 8 * 7 + 4), br.nbits);
try br.shift(@intCast(br.nbits)); // clear buffer
try br.fill(8); // refill with the rest of the bytes
try testing.expectEqual(@as(u64, 0x00_00_00_00_00_08_07_06), br.bits);
}
test "readAll" {
inline for ([_]type{ u64, u32 }) |T| {
const data = [_]u8{
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
};
var fbs = std.io.fixedBufferStream(&data);
var br = bitReader(T, fbs.reader());
switch (T) {
u64 => try testing.expectEqual(@as(u64, 0x08_07_06_05_04_03_02_01), br.bits),
u32 => try testing.expectEqual(@as(u32, 0x04_03_02_01), br.bits),
else => unreachable,
}
var out: [16]u8 = undefined;
try br.readAll(out[0..]);
try testing.expect(br.nbits == 0);
try testing.expect(br.bits == 0);
try testing.expectEqualSlices(u8, data[0..16], &out);
}
}
test "readFixedCode" {
inline for ([_]type{ u64, u32 }) |T| {
const fixed_codes = @import("huffman_encoder.zig").fixed_codes;
var fbs = std.io.fixedBufferStream(&fixed_codes);
var rdr = bitReader(T, fbs.reader());
for (0..286) |c| {
try testing.expectEqual(c, try rdr.readFixedCode());
}
try testing.expect(rdr.nbits == 0);
}
}
test "u32 leaves no bits on u32 reads" {
const data = [_]u8{
0xff, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};
var fbs = std.io.fixedBufferStream(&data);
var br = bitReader(u32, fbs.reader());
_ = try br.read(u3);
try testing.expectEqual(29, br.nbits);
br.alignToByte();
try testing.expectEqual(24, br.nbits);
try testing.expectEqual(0x04_03_02_01, try br.read(u32));
try testing.expectEqual(0, br.nbits);
try testing.expectEqual(0x08_07_06_05, try br.read(u32));
try testing.expectEqual(0, br.nbits);
_ = try br.read(u9);
try testing.expectEqual(23, br.nbits);
br.alignToByte();
try testing.expectEqual(16, br.nbits);
try testing.expectEqual(0x0e_0d_0c_0b, try br.read(u32));
try testing.expectEqual(0, br.nbits);
}
test "u64 need fill after alignToByte" {
const data = [_]u8{
0xff, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};
// without fill
var fbs = std.io.fixedBufferStream(&data);
var br = bitReader(u64, fbs.reader());
_ = try br.read(u23);
try testing.expectEqual(41, br.nbits);
br.alignToByte();
try testing.expectEqual(40, br.nbits);
try testing.expectEqual(0x06_05_04_03, try br.read(u32));
try testing.expectEqual(8, br.nbits);
try testing.expectEqual(0x0a_09_08_07, try br.read(u32));
try testing.expectEqual(32, br.nbits);
// fill after align ensures all bits filled
fbs.reset();
br = bitReader(u64, fbs.reader());
_ = try br.read(u23);
try testing.expectEqual(41, br.nbits);
br.alignToByte();
try br.fill(0);
try testing.expectEqual(64, br.nbits);
try testing.expectEqual(0x06_05_04_03, try br.read(u32));
try testing.expectEqual(32, br.nbits);
try testing.expectEqual(0x0a_09_08_07, try br.read(u32));
try testing.expectEqual(0, br.nbits);
}

View File

@ -1,99 +0,0 @@
const std = @import("std");
const assert = std.debug.assert;
/// Bit writer for use in deflate (compression).
///
/// Has internal bits buffer of 64 bits and internal bytes buffer of 248 bytes.
/// When we accumulate 48 bits 6 bytes are moved to the bytes buffer. When we
/// accumulate 240 bytes they are flushed to the underlying inner_writer.
///
pub fn BitWriter(comptime WriterType: type) type {
// buffer_flush_size indicates the buffer size
// after which bytes are flushed to the writer.
// Should preferably be a multiple of 6, since
// we accumulate 6 bytes between writes to the buffer.
const buffer_flush_size = 240;
// buffer_size is the actual output byte buffer size.
// It must have additional headroom for a flush
// which can contain up to 8 bytes.
const buffer_size = buffer_flush_size + 8;
return struct {
inner_writer: WriterType,
// Data waiting to be written is bytes[0 .. nbytes]
// and then the low nbits of bits. Data is always written
// sequentially into the bytes array.
bits: u64 = 0,
nbits: u32 = 0, // number of bits
bytes: [buffer_size]u8 = undefined,
nbytes: u32 = 0, // number of bytes
const Self = @This();
pub const Error = WriterType.Error || error{UnfinishedBits};
pub fn init(writer: WriterType) Self {
return .{ .inner_writer = writer };
}
pub fn setWriter(self: *Self, new_writer: WriterType) void {
//assert(self.bits == 0 and self.nbits == 0 and self.nbytes == 0);
self.inner_writer = new_writer;
}
pub fn flush(self: *Self) Error!void {
var n = self.nbytes;
while (self.nbits != 0) {
self.bytes[n] = @as(u8, @truncate(self.bits));
self.bits >>= 8;
if (self.nbits > 8) { // Avoid underflow
self.nbits -= 8;
} else {
self.nbits = 0;
}
n += 1;
}
self.bits = 0;
_ = try self.inner_writer.write(self.bytes[0..n]);
self.nbytes = 0;
}
pub fn writeBits(self: *Self, b: u32, nb: u32) Error!void {
self.bits |= @as(u64, @intCast(b)) << @as(u6, @intCast(self.nbits));
self.nbits += nb;
if (self.nbits < 48)
return;
var n = self.nbytes;
std.mem.writeInt(u64, self.bytes[n..][0..8], self.bits, .little);
n += 6;
if (n >= buffer_flush_size) {
_ = try self.inner_writer.write(self.bytes[0..n]);
n = 0;
}
self.nbytes = n;
self.bits >>= 48;
self.nbits -= 48;
}
pub fn writeBytes(self: *Self, bytes: []const u8) Error!void {
var n = self.nbytes;
if (self.nbits & 7 != 0) {
return error.UnfinishedBits;
}
while (self.nbits != 0) {
self.bytes[n] = @as(u8, @truncate(self.bits));
self.bits >>= 8;
self.nbits -= 8;
n += 1;
}
if (n != 0) {
_ = try self.inner_writer.write(self.bytes[0..n]);
}
self.nbytes = 0;
_ = try self.inner_writer.write(bytes);
}
};
}

View File

@ -1,706 +0,0 @@
const std = @import("std");
const io = std.io;
const assert = std.debug.assert;
const hc = @import("huffman_encoder.zig");
const consts = @import("consts.zig").huffman;
const Token = @import("Token.zig");
const BitWriter = @import("bit_writer.zig").BitWriter;
pub fn blockWriter(writer: anytype) BlockWriter(@TypeOf(writer)) {
return BlockWriter(@TypeOf(writer)).init(writer);
}
/// Accepts list of tokens, decides what is best block type to write. What block
/// type will provide best compression. Writes header and body of the block.
///
pub fn BlockWriter(comptime WriterType: type) type {
const BitWriterType = BitWriter(WriterType);
return struct {
const codegen_order = consts.codegen_order;
const end_code_mark = 255;
const Self = @This();
pub const Error = BitWriterType.Error;
bit_writer: BitWriterType,
codegen_freq: [consts.codegen_code_count]u16 = undefined,
literal_freq: [consts.max_num_lit]u16 = undefined,
distance_freq: [consts.distance_code_count]u16 = undefined,
codegen: [consts.max_num_lit + consts.distance_code_count + 1]u8 = undefined,
literal_encoding: hc.LiteralEncoder = .{},
distance_encoding: hc.DistanceEncoder = .{},
codegen_encoding: hc.CodegenEncoder = .{},
fixed_literal_encoding: hc.LiteralEncoder,
fixed_distance_encoding: hc.DistanceEncoder,
huff_distance: hc.DistanceEncoder,
pub fn init(writer: WriterType) Self {
return .{
.bit_writer = BitWriterType.init(writer),
.fixed_literal_encoding = hc.fixedLiteralEncoder(),
.fixed_distance_encoding = hc.fixedDistanceEncoder(),
.huff_distance = hc.huffmanDistanceEncoder(),
};
}
/// Flush intrenal bit buffer to the writer.
/// Should be called only when bit stream is at byte boundary.
///
/// That is after final block; when last byte could be incomplete or
/// after stored block; which is aligned to the byte boundary (it has x
/// padding bits after first 3 bits).
pub fn flush(self: *Self) Error!void {
try self.bit_writer.flush();
}
pub fn setWriter(self: *Self, new_writer: WriterType) void {
self.bit_writer.setWriter(new_writer);
}
fn writeCode(self: *Self, c: hc.HuffCode) Error!void {
try self.bit_writer.writeBits(c.code, c.len);
}
// RFC 1951 3.2.7 specifies a special run-length encoding for specifying
// the literal and distance lengths arrays (which are concatenated into a single
// array). This method generates that run-length encoding.
//
// The result is written into the codegen array, and the frequencies
// of each code is written into the codegen_freq array.
// Codes 0-15 are single byte codes. Codes 16-18 are followed by additional
// information. Code bad_code is an end marker
//
// num_literals: The number of literals in literal_encoding
// num_distances: The number of distances in distance_encoding
// lit_enc: The literal encoder to use
// dist_enc: The distance encoder to use
fn generateCodegen(
self: *Self,
num_literals: u32,
num_distances: u32,
lit_enc: *hc.LiteralEncoder,
dist_enc: *hc.DistanceEncoder,
) void {
for (self.codegen_freq, 0..) |_, i| {
self.codegen_freq[i] = 0;
}
// Note that we are using codegen both as a temporary variable for holding
// a copy of the frequencies, and as the place where we put the result.
// This is fine because the output is always shorter than the input used
// so far.
var codegen = &self.codegen; // cache
// Copy the concatenated code sizes to codegen. Put a marker at the end.
var cgnl = codegen[0..num_literals];
for (cgnl, 0..) |_, i| {
cgnl[i] = @as(u8, @intCast(lit_enc.codes[i].len));
}
cgnl = codegen[num_literals .. num_literals + num_distances];
for (cgnl, 0..) |_, i| {
cgnl[i] = @as(u8, @intCast(dist_enc.codes[i].len));
}
codegen[num_literals + num_distances] = end_code_mark;
var size = codegen[0];
var count: i32 = 1;
var out_index: u32 = 0;
var in_index: u32 = 1;
while (size != end_code_mark) : (in_index += 1) {
// INVARIANT: We have seen "count" copies of size that have not yet
// had output generated for them.
const next_size = codegen[in_index];
if (next_size == size) {
count += 1;
continue;
}
// We need to generate codegen indicating "count" of size.
if (size != 0) {
codegen[out_index] = size;
out_index += 1;
self.codegen_freq[size] += 1;
count -= 1;
while (count >= 3) {
var n: i32 = 6;
if (n > count) {
n = count;
}
codegen[out_index] = 16;
out_index += 1;
codegen[out_index] = @as(u8, @intCast(n - 3));
out_index += 1;
self.codegen_freq[16] += 1;
count -= n;
}
} else {
while (count >= 11) {
var n: i32 = 138;
if (n > count) {
n = count;
}
codegen[out_index] = 18;
out_index += 1;
codegen[out_index] = @as(u8, @intCast(n - 11));
out_index += 1;
self.codegen_freq[18] += 1;
count -= n;
}
if (count >= 3) {
// 3 <= count <= 10
codegen[out_index] = 17;
out_index += 1;
codegen[out_index] = @as(u8, @intCast(count - 3));
out_index += 1;
self.codegen_freq[17] += 1;
count = 0;
}
}
count -= 1;
while (count >= 0) : (count -= 1) {
codegen[out_index] = size;
out_index += 1;
self.codegen_freq[size] += 1;
}
// Set up invariant for next time through the loop.
size = next_size;
count = 1;
}
// Marker indicating the end of the codegen.
codegen[out_index] = end_code_mark;
}
const DynamicSize = struct {
size: u32,
num_codegens: u32,
};
// dynamicSize returns the size of dynamically encoded data in bits.
fn dynamicSize(
self: *Self,
lit_enc: *hc.LiteralEncoder, // literal encoder
dist_enc: *hc.DistanceEncoder, // distance encoder
extra_bits: u32,
) DynamicSize {
var num_codegens = self.codegen_freq.len;
while (num_codegens > 4 and self.codegen_freq[codegen_order[num_codegens - 1]] == 0) {
num_codegens -= 1;
}
const header = 3 + 5 + 5 + 4 + (3 * num_codegens) +
self.codegen_encoding.bitLength(self.codegen_freq[0..]) +
self.codegen_freq[16] * 2 +
self.codegen_freq[17] * 3 +
self.codegen_freq[18] * 7;
const size = header +
lit_enc.bitLength(&self.literal_freq) +
dist_enc.bitLength(&self.distance_freq) +
extra_bits;
return DynamicSize{
.size = @as(u32, @intCast(size)),
.num_codegens = @as(u32, @intCast(num_codegens)),
};
}
// fixedSize returns the size of dynamically encoded data in bits.
fn fixedSize(self: *Self, extra_bits: u32) u32 {
return 3 +
self.fixed_literal_encoding.bitLength(&self.literal_freq) +
self.fixed_distance_encoding.bitLength(&self.distance_freq) +
extra_bits;
}
const StoredSize = struct {
size: u32,
storable: bool,
};
// storedSizeFits calculates the stored size, including header.
// The function returns the size in bits and whether the block
// fits inside a single block.
fn storedSizeFits(in: ?[]const u8) StoredSize {
if (in == null) {
return .{ .size = 0, .storable = false };
}
if (in.?.len <= consts.max_store_block_size) {
return .{ .size = @as(u32, @intCast((in.?.len + 5) * 8)), .storable = true };
}
return .{ .size = 0, .storable = false };
}
// Write the header of a dynamic Huffman block to the output stream.
//
// num_literals: The number of literals specified in codegen
// num_distances: The number of distances specified in codegen
// num_codegens: The number of codegens used in codegen
// eof: Is it the end-of-file? (end of stream)
fn dynamicHeader(
self: *Self,
num_literals: u32,
num_distances: u32,
num_codegens: u32,
eof: bool,
) Error!void {
const first_bits: u32 = if (eof) 5 else 4;
try self.bit_writer.writeBits(first_bits, 3);
try self.bit_writer.writeBits(num_literals - 257, 5);
try self.bit_writer.writeBits(num_distances - 1, 5);
try self.bit_writer.writeBits(num_codegens - 4, 4);
var i: u32 = 0;
while (i < num_codegens) : (i += 1) {
const value = self.codegen_encoding.codes[codegen_order[i]].len;
try self.bit_writer.writeBits(value, 3);
}
i = 0;
while (true) {
const code_word: u32 = @as(u32, @intCast(self.codegen[i]));
i += 1;
if (code_word == end_code_mark) {
break;
}
try self.writeCode(self.codegen_encoding.codes[@as(u32, @intCast(code_word))]);
switch (code_word) {
16 => {
try self.bit_writer.writeBits(self.codegen[i], 2);
i += 1;
},
17 => {
try self.bit_writer.writeBits(self.codegen[i], 3);
i += 1;
},
18 => {
try self.bit_writer.writeBits(self.codegen[i], 7);
i += 1;
},
else => {},
}
}
}
fn storedHeader(self: *Self, length: usize, eof: bool) Error!void {
assert(length <= 65535);
const flag: u32 = if (eof) 1 else 0;
try self.bit_writer.writeBits(flag, 3);
try self.flush();
const l: u16 = @intCast(length);
try self.bit_writer.writeBits(l, 16);
try self.bit_writer.writeBits(~l, 16);
}
fn fixedHeader(self: *Self, eof: bool) Error!void {
// Indicate that we are a fixed Huffman block
var value: u32 = 2;
if (eof) {
value = 3;
}
try self.bit_writer.writeBits(value, 3);
}
// Write a block of tokens with the smallest encoding. Will choose block type.
// The original input can be supplied, and if the huffman encoded data
// is larger than the original bytes, the data will be written as a
// stored block.
// If the input is null, the tokens will always be Huffman encoded.
pub fn write(self: *Self, tokens: []const Token, eof: bool, input: ?[]const u8) Error!void {
const lit_and_dist = self.indexTokens(tokens);
const num_literals = lit_and_dist.num_literals;
const num_distances = lit_and_dist.num_distances;
var extra_bits: u32 = 0;
const ret = storedSizeFits(input);
const stored_size = ret.size;
const storable = ret.storable;
if (storable) {
// We only bother calculating the costs of the extra bits required by
// the length of distance fields (which will be the same for both fixed
// and dynamic encoding), if we need to compare those two encodings
// against stored encoding.
var length_code: u16 = Token.length_codes_start + 8;
while (length_code < num_literals) : (length_code += 1) {
// First eight length codes have extra size = 0.
extra_bits += @as(u32, @intCast(self.literal_freq[length_code])) *
@as(u32, @intCast(Token.lengthExtraBits(length_code)));
}
var distance_code: u16 = 4;
while (distance_code < num_distances) : (distance_code += 1) {
// First four distance codes have extra size = 0.
extra_bits += @as(u32, @intCast(self.distance_freq[distance_code])) *
@as(u32, @intCast(Token.distanceExtraBits(distance_code)));
}
}
// Figure out smallest code.
// Fixed Huffman baseline.
var literal_encoding = &self.fixed_literal_encoding;
var distance_encoding = &self.fixed_distance_encoding;
var size = self.fixedSize(extra_bits);
// Dynamic Huffman?
var num_codegens: u32 = 0;
// Generate codegen and codegenFrequencies, which indicates how to encode
// the literal_encoding and the distance_encoding.
self.generateCodegen(
num_literals,
num_distances,
&self.literal_encoding,
&self.distance_encoding,
);
self.codegen_encoding.generate(self.codegen_freq[0..], 7);
const dynamic_size = self.dynamicSize(
&self.literal_encoding,
&self.distance_encoding,
extra_bits,
);
const dyn_size = dynamic_size.size;
num_codegens = dynamic_size.num_codegens;
if (dyn_size < size) {
size = dyn_size;
literal_encoding = &self.literal_encoding;
distance_encoding = &self.distance_encoding;
}
// Stored bytes?
if (storable and stored_size < size) {
try self.storedBlock(input.?, eof);
return;
}
// Huffman.
if (@intFromPtr(literal_encoding) == @intFromPtr(&self.fixed_literal_encoding)) {
try self.fixedHeader(eof);
} else {
try self.dynamicHeader(num_literals, num_distances, num_codegens, eof);
}
// Write the tokens.
try self.writeTokens(tokens, &literal_encoding.codes, &distance_encoding.codes);
}
pub fn storedBlock(self: *Self, input: []const u8, eof: bool) Error!void {
try self.storedHeader(input.len, eof);
try self.bit_writer.writeBytes(input);
}
// writeBlockDynamic encodes a block using a dynamic Huffman table.
// This should be used if the symbols used have a disproportionate
// histogram distribution.
// If input is supplied and the compression savings are below 1/16th of the
// input size the block is stored.
fn dynamicBlock(
self: *Self,
tokens: []const Token,
eof: bool,
input: ?[]const u8,
) Error!void {
const total_tokens = self.indexTokens(tokens);
const num_literals = total_tokens.num_literals;
const num_distances = total_tokens.num_distances;
// Generate codegen and codegenFrequencies, which indicates how to encode
// the literal_encoding and the distance_encoding.
self.generateCodegen(
num_literals,
num_distances,
&self.literal_encoding,
&self.distance_encoding,
);
self.codegen_encoding.generate(self.codegen_freq[0..], 7);
const dynamic_size = self.dynamicSize(&self.literal_encoding, &self.distance_encoding, 0);
const size = dynamic_size.size;
const num_codegens = dynamic_size.num_codegens;
// Store bytes, if we don't get a reasonable improvement.
const stored_size = storedSizeFits(input);
const ssize = stored_size.size;
const storable = stored_size.storable;
if (storable and ssize < (size + (size >> 4))) {
try self.storedBlock(input.?, eof);
return;
}
// Write Huffman table.
try self.dynamicHeader(num_literals, num_distances, num_codegens, eof);
// Write the tokens.
try self.writeTokens(tokens, &self.literal_encoding.codes, &self.distance_encoding.codes);
}
const TotalIndexedTokens = struct {
num_literals: u32,
num_distances: u32,
};
// Indexes a slice of tokens followed by an end_block_marker, and updates
// literal_freq and distance_freq, and generates literal_encoding
// and distance_encoding.
// The number of literal and distance tokens is returned.
fn indexTokens(self: *Self, tokens: []const Token) TotalIndexedTokens {
var num_literals: u32 = 0;
var num_distances: u32 = 0;
for (self.literal_freq, 0..) |_, i| {
self.literal_freq[i] = 0;
}
for (self.distance_freq, 0..) |_, i| {
self.distance_freq[i] = 0;
}
for (tokens) |t| {
if (t.kind == Token.Kind.literal) {
self.literal_freq[t.literal()] += 1;
continue;
}
self.literal_freq[t.lengthCode()] += 1;
self.distance_freq[t.distanceCode()] += 1;
}
// add end_block_marker token at the end
self.literal_freq[consts.end_block_marker] += 1;
// get the number of literals
num_literals = @as(u32, @intCast(self.literal_freq.len));
while (self.literal_freq[num_literals - 1] == 0) {
num_literals -= 1;
}
// get the number of distances
num_distances = @as(u32, @intCast(self.distance_freq.len));
while (num_distances > 0 and self.distance_freq[num_distances - 1] == 0) {
num_distances -= 1;
}
if (num_distances == 0) {
// We haven't found a single match. If we want to go with the dynamic encoding,
// we should count at least one distance to be sure that the distance huffman tree could be encoded.
self.distance_freq[0] = 1;
num_distances = 1;
}
self.literal_encoding.generate(&self.literal_freq, 15);
self.distance_encoding.generate(&self.distance_freq, 15);
return TotalIndexedTokens{
.num_literals = num_literals,
.num_distances = num_distances,
};
}
// Writes a slice of tokens to the output followed by and end_block_marker.
// codes for literal and distance encoding must be supplied.
fn writeTokens(
self: *Self,
tokens: []const Token,
le_codes: []hc.HuffCode,
oe_codes: []hc.HuffCode,
) Error!void {
for (tokens) |t| {
if (t.kind == Token.Kind.literal) {
try self.writeCode(le_codes[t.literal()]);
continue;
}
// Write the length
const le = t.lengthEncoding();
try self.writeCode(le_codes[le.code]);
if (le.extra_bits > 0) {
try self.bit_writer.writeBits(le.extra_length, le.extra_bits);
}
// Write the distance
const oe = t.distanceEncoding();
try self.writeCode(oe_codes[oe.code]);
if (oe.extra_bits > 0) {
try self.bit_writer.writeBits(oe.extra_distance, oe.extra_bits);
}
}
// add end_block_marker at the end
try self.writeCode(le_codes[consts.end_block_marker]);
}
// Encodes a block of bytes as either Huffman encoded literals or uncompressed bytes
// if the results only gains very little from compression.
pub fn huffmanBlock(self: *Self, input: []const u8, eof: bool) Error!void {
// Add everything as literals
histogram(input, &self.literal_freq);
self.literal_freq[consts.end_block_marker] = 1;
const num_literals = consts.end_block_marker + 1;
self.distance_freq[0] = 1;
const num_distances = 1;
self.literal_encoding.generate(&self.literal_freq, 15);
// Figure out smallest code.
// Always use dynamic Huffman or Store
var num_codegens: u32 = 0;
// Generate codegen and codegenFrequencies, which indicates how to encode
// the literal_encoding and the distance_encoding.
self.generateCodegen(
num_literals,
num_distances,
&self.literal_encoding,
&self.huff_distance,
);
self.codegen_encoding.generate(self.codegen_freq[0..], 7);
const dynamic_size = self.dynamicSize(&self.literal_encoding, &self.huff_distance, 0);
const size = dynamic_size.size;
num_codegens = dynamic_size.num_codegens;
// Store bytes, if we don't get a reasonable improvement.
const stored_size_ret = storedSizeFits(input);
const ssize = stored_size_ret.size;
const storable = stored_size_ret.storable;
if (storable and ssize < (size + (size >> 4))) {
try self.storedBlock(input, eof);
return;
}
// Huffman.
try self.dynamicHeader(num_literals, num_distances, num_codegens, eof);
const encoding = self.literal_encoding.codes[0..257];
for (input) |t| {
const c = encoding[t];
try self.bit_writer.writeBits(c.code, c.len);
}
try self.writeCode(encoding[consts.end_block_marker]);
}
// histogram accumulates a histogram of b in h.
fn histogram(b: []const u8, h: *[286]u16) void {
// Clear histogram
for (h, 0..) |_, i| {
h[i] = 0;
}
var lh = h.*[0..256];
for (b) |t| {
lh[t] += 1;
}
}
};
}
// tests
const expect = std.testing.expect;
const fmt = std.fmt;
const testing = std.testing;
const ArrayList = std.ArrayList;
const TestCase = @import("testdata/block_writer.zig").TestCase;
const testCases = @import("testdata/block_writer.zig").testCases;
// tests if the writeBlock encoding has changed.
test "write" {
inline for (0..testCases.len) |i| {
try testBlock(testCases[i], .write_block);
}
}
// tests if the writeBlockDynamic encoding has changed.
test "dynamicBlock" {
inline for (0..testCases.len) |i| {
try testBlock(testCases[i], .write_dyn_block);
}
}
test "huffmanBlock" {
inline for (0..testCases.len) |i| {
try testBlock(testCases[i], .write_huffman_block);
}
try testBlock(.{
.tokens = &[_]Token{},
.input = "huffman-rand-max.input",
.want = "huffman-rand-max.{s}.expect",
}, .write_huffman_block);
}
const TestFn = enum {
write_block,
write_dyn_block, // write dynamic block
write_huffman_block,
fn to_s(self: TestFn) []const u8 {
return switch (self) {
.write_block => "wb",
.write_dyn_block => "dyn",
.write_huffman_block => "huff",
};
}
fn write(
comptime self: TestFn,
bw: anytype,
tok: []const Token,
input: ?[]const u8,
final: bool,
) !void {
switch (self) {
.write_block => try bw.write(tok, final, input),
.write_dyn_block => try bw.dynamicBlock(tok, final, input),
.write_huffman_block => try bw.huffmanBlock(input.?, final),
}
try bw.flush();
}
};
// testBlock tests a block against its references
//
// size
// 64K [file-name].input - input non compressed file
// 8.1K [file-name].golden -
// 78 [file-name].dyn.expect - output with writeBlockDynamic
// 78 [file-name].wb.expect - output with writeBlock
// 8.1K [file-name].huff.expect - output with writeBlockHuff
// 78 [file-name].dyn.expect-noinput - output with writeBlockDynamic when input is null
// 78 [file-name].wb.expect-noinput - output with writeBlock when input is null
//
// wb - writeBlock
// dyn - writeBlockDynamic
// huff - writeBlockHuff
//
fn testBlock(comptime tc: TestCase, comptime tfn: TestFn) !void {
if (tc.input.len != 0 and tc.want.len != 0) {
const want_name = comptime fmt.comptimePrint(tc.want, .{tfn.to_s()});
const input = @embedFile("testdata/block_writer/" ++ tc.input);
const want = @embedFile("testdata/block_writer/" ++ want_name);
try testWriteBlock(tfn, input, want, tc.tokens);
}
if (tfn == .write_huffman_block) {
return;
}
const want_name_no_input = comptime fmt.comptimePrint(tc.want_no_input, .{tfn.to_s()});
const want = @embedFile("testdata/block_writer/" ++ want_name_no_input);
try testWriteBlock(tfn, null, want, tc.tokens);
}
// Uses writer function `tfn` to write `tokens`, tests that we got `want` as output.
fn testWriteBlock(comptime tfn: TestFn, input: ?[]const u8, want: []const u8, tokens: []const Token) !void {
var buf = ArrayList(u8).init(testing.allocator);
var bw = blockWriter(buf.writer());
try tfn.write(&bw, tokens, input, false);
var got = buf.items;
try testing.expectEqualSlices(u8, want, got); // expect writeBlock to yield expected result
try expect(got[0] & 0b0000_0001 == 0); // bfinal is not set
//
// Test if the writer produces the same output after reset.
buf.deinit();
buf = ArrayList(u8).init(testing.allocator);
defer buf.deinit();
bw.setWriter(buf.writer());
try tfn.write(&bw, tokens, input, true);
try bw.flush();
got = buf.items;
try expect(got[0] & 1 == 1); // bfinal is set
buf.items[0] &= 0b1111_1110; // remove bfinal bit, so we can run test slices
try testing.expectEqualSlices(u8, want, got); // expect writeBlock to yield expected result
}

View File

@ -1,49 +0,0 @@
pub const deflate = struct {
// Number of tokens to accumulate in deflate before starting block encoding.
//
// In zlib this depends on memlevel: 6 + memlevel, where default memlevel is
// 8 and max 9 that gives 14 or 15 bits.
pub const tokens = 1 << 15;
};
pub const match = struct {
pub const base_length = 3; // smallest match length per the RFC section 3.2.5
pub const min_length = 4; // min length used in this algorithm
pub const max_length = 258;
pub const min_distance = 1;
pub const max_distance = 32768;
};
pub const history = struct {
pub const len = match.max_distance;
};
pub const lookup = struct {
pub const bits = 15;
pub const len = 1 << bits;
pub const shift = 32 - bits;
};
pub const huffman = struct {
// The odd order in which the codegen code sizes are written.
pub const codegen_order = [_]u32{ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
// The number of codegen codes.
pub const codegen_code_count = 19;
// The largest distance code.
pub const distance_code_count = 30;
// Maximum number of literals.
pub const max_num_lit = 286;
// Max number of frequencies used for a Huffman Code
// Possible lengths are codegen_code_count (19), distance_code_count (30) and max_num_lit (286).
// The largest of these is max_num_lit.
pub const max_num_frequencies = max_num_lit;
// Biggest block size for uncompressed block.
pub const max_store_block_size = 65535;
// The special code used to mark the end of a block.
pub const end_block_marker = 256;
};

View File

@ -1,208 +0,0 @@
//! Container of the deflate bit stream body. Container adds header before
//! deflate bit stream and footer after. It can bi gzip, zlib or raw (no header,
//! no footer, raw bit stream).
//!
//! Zlib format is defined in rfc 1950. Header has 2 bytes and footer 4 bytes
//! addler 32 checksum.
//!
//! Gzip format is defined in rfc 1952. Header has 10+ bytes and footer 4 bytes
//! crc32 checksum and 4 bytes of uncompressed data length.
//!
//!
//! rfc 1950: https://datatracker.ietf.org/doc/html/rfc1950#page-4
//! rfc 1952: https://datatracker.ietf.org/doc/html/rfc1952#page-5
//!
const std = @import("std");
pub const Container = enum {
raw, // no header or footer
gzip, // gzip header and footer
zlib, // zlib header and footer
pub fn size(w: Container) usize {
return headerSize(w) + footerSize(w);
}
pub fn headerSize(w: Container) usize {
return switch (w) {
.gzip => 10,
.zlib => 2,
.raw => 0,
};
}
pub fn footerSize(w: Container) usize {
return switch (w) {
.gzip => 8,
.zlib => 4,
.raw => 0,
};
}
pub const list = [_]Container{ .raw, .gzip, .zlib };
pub const Error = error{
BadGzipHeader,
BadZlibHeader,
WrongGzipChecksum,
WrongGzipSize,
WrongZlibChecksum,
};
pub fn writeHeader(comptime wrap: Container, writer: anytype) !void {
switch (wrap) {
.gzip => {
// GZIP 10 byte header (https://datatracker.ietf.org/doc/html/rfc1952#page-5):
// - ID1 (IDentification 1), always 0x1f
// - ID2 (IDentification 2), always 0x8b
// - CM (Compression Method), always 8 = deflate
// - FLG (Flags), all set to 0
// - 4 bytes, MTIME (Modification time), not used, all set to zero
// - XFL (eXtra FLags), all set to zero
// - OS (Operating System), 03 = Unix
const gzipHeader = [_]u8{ 0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03 };
try writer.writeAll(&gzipHeader);
},
.zlib => {
// ZLIB has a two-byte header (https://datatracker.ietf.org/doc/html/rfc1950#page-4):
// 1st byte:
// - First four bits is the CINFO (compression info), which is 7 for the default deflate window size.
// - The next four bits is the CM (compression method), which is 8 for deflate.
// 2nd byte:
// - Two bits is the FLEVEL (compression level). Values are: 0=fastest, 1=fast, 2=default, 3=best.
// - The next bit, FDICT, is set if a dictionary is given.
// - The final five FCHECK bits form a mod-31 checksum.
//
// CINFO = 7, CM = 8, FLEVEL = 0b10, FDICT = 0, FCHECK = 0b11100
const zlibHeader = [_]u8{ 0x78, 0b10_0_11100 };
try writer.writeAll(&zlibHeader);
},
.raw => {},
}
}
pub fn writeFooter(comptime wrap: Container, hasher: *Hasher(wrap), writer: anytype) !void {
var bits: [4]u8 = undefined;
switch (wrap) {
.gzip => {
// GZIP 8 bytes footer
// - 4 bytes, CRC32 (CRC-32)
// - 4 bytes, ISIZE (Input SIZE) - size of the original (uncompressed) input data modulo 2^32
std.mem.writeInt(u32, &bits, hasher.chksum(), .little);
try writer.writeAll(&bits);
std.mem.writeInt(u32, &bits, hasher.bytesRead(), .little);
try writer.writeAll(&bits);
},
.zlib => {
// ZLIB (RFC 1950) is big-endian, unlike GZIP (RFC 1952).
// 4 bytes of ADLER32 (Adler-32 checksum)
// Checksum value of the uncompressed data (excluding any
// dictionary data) computed according to Adler-32
// algorithm.
std.mem.writeInt(u32, &bits, hasher.chksum(), .big);
try writer.writeAll(&bits);
},
.raw => {},
}
}
pub fn parseHeader(comptime wrap: Container, reader: anytype) !void {
switch (wrap) {
.gzip => try parseGzipHeader(reader),
.zlib => try parseZlibHeader(reader),
.raw => {},
}
}
fn parseGzipHeader(reader: anytype) !void {
const magic1 = try reader.read(u8);
const magic2 = try reader.read(u8);
const method = try reader.read(u8);
const flags = try reader.read(u8);
try reader.skipBytes(6); // mtime(4), xflags, os
if (magic1 != 0x1f or magic2 != 0x8b or method != 0x08)
return error.BadGzipHeader;
// Flags description: https://www.rfc-editor.org/rfc/rfc1952.html#page-5
if (flags != 0) {
if (flags & 0b0000_0100 != 0) { // FEXTRA
const extra_len = try reader.read(u16);
try reader.skipBytes(extra_len);
}
if (flags & 0b0000_1000 != 0) { // FNAME
try reader.skipStringZ();
}
if (flags & 0b0001_0000 != 0) { // FCOMMENT
try reader.skipStringZ();
}
if (flags & 0b0000_0010 != 0) { // FHCRC
try reader.skipBytes(2);
}
}
}
fn parseZlibHeader(reader: anytype) !void {
const cm = try reader.read(u4);
const cinfo = try reader.read(u4);
_ = try reader.read(u8);
if (cm != 8 or cinfo > 7) {
return error.BadZlibHeader;
}
}
pub fn parseFooter(comptime wrap: Container, hasher: *Hasher(wrap), reader: anytype) !void {
switch (wrap) {
.gzip => {
try reader.fill(0);
if (try reader.read(u32) != hasher.chksum()) return error.WrongGzipChecksum;
if (try reader.read(u32) != hasher.bytesRead()) return error.WrongGzipSize;
},
.zlib => {
const chksum: u32 = @byteSwap(hasher.chksum());
if (try reader.read(u32) != chksum) return error.WrongZlibChecksum;
},
.raw => {},
}
}
pub fn Hasher(comptime wrap: Container) type {
const HasherType = switch (wrap) {
.gzip => std.hash.Crc32,
.zlib => std.hash.Adler32,
.raw => struct {
pub fn init() @This() {
return .{};
}
},
};
return struct {
hasher: HasherType = HasherType.init(),
bytes: usize = 0,
const Self = @This();
pub fn update(self: *Self, buf: []const u8) void {
switch (wrap) {
.raw => {},
else => {
self.hasher.update(buf);
self.bytes += buf.len;
},
}
}
pub fn chksum(self: *Self) u32 {
switch (wrap) {
.raw => return 0,
else => return self.hasher.final(),
}
}
pub fn bytesRead(self: *Self) u32 {
return @truncate(self.bytes);
}
};
}
};

View File

@ -1,744 +0,0 @@
const std = @import("std");
const io = std.io;
const assert = std.debug.assert;
const testing = std.testing;
const expect = testing.expect;
const print = std.debug.print;
const Token = @import("Token.zig");
const consts = @import("consts.zig");
const BlockWriter = @import("block_writer.zig").BlockWriter;
const Container = @import("container.zig").Container;
const SlidingWindow = @import("SlidingWindow.zig");
const Lookup = @import("Lookup.zig");
pub const Options = struct {
level: Level = .default,
};
/// Trades between speed and compression size.
/// Starts with level 4: in [zlib](https://github.com/madler/zlib/blob/abd3d1a28930f89375d4b41408b39f6c1be157b2/deflate.c#L115C1-L117C43)
/// levels 1-3 are using different algorithm to perform faster but with less
/// compression. That is not implemented here.
pub const Level = enum(u4) {
// zig fmt: off
fast = 0xb, level_4 = 4,
level_5 = 5,
default = 0xc, level_6 = 6,
level_7 = 7,
level_8 = 8,
best = 0xd, level_9 = 9,
// zig fmt: on
};
/// Algorithm knobs for each level.
const LevelArgs = struct {
good: u16, // Do less lookups if we already have match of this length.
nice: u16, // Stop looking for better match if we found match with at least this length.
lazy: u16, // Don't do lazy match find if got match with at least this length.
chain: u16, // How many lookups for previous match to perform.
pub fn get(level: Level) LevelArgs {
// zig fmt: off
return switch (level) {
.fast, .level_4 => .{ .good = 4, .lazy = 4, .nice = 16, .chain = 16 },
.level_5 => .{ .good = 8, .lazy = 16, .nice = 32, .chain = 32 },
.default, .level_6 => .{ .good = 8, .lazy = 16, .nice = 128, .chain = 128 },
.level_7 => .{ .good = 8, .lazy = 32, .nice = 128, .chain = 256 },
.level_8 => .{ .good = 32, .lazy = 128, .nice = 258, .chain = 1024 },
.best, .level_9 => .{ .good = 32, .lazy = 258, .nice = 258, .chain = 4096 },
};
// zig fmt: on
}
};
/// Compress plain data from reader into compressed stream written to writer.
pub fn compress(comptime container: Container, reader: anytype, writer: anytype, options: Options) !void {
var c = try compressor(container, writer, options);
try c.compress(reader);
try c.finish();
}
/// Create compressor for writer type.
pub fn compressor(comptime container: Container, writer: anytype, options: Options) !Compressor(
container,
@TypeOf(writer),
) {
return try Compressor(container, @TypeOf(writer)).init(writer, options);
}
/// Compressor type.
pub fn Compressor(comptime container: Container, comptime WriterType: type) type {
const TokenWriterType = BlockWriter(WriterType);
return Deflate(container, WriterType, TokenWriterType);
}
/// Default compression algorithm. Has two steps: tokenization and token
/// encoding.
///
/// Tokenization takes uncompressed input stream and produces list of tokens.
/// Each token can be literal (byte of data) or match (backrefernce to previous
/// data with length and distance). Tokenization accumulators 32K tokens, when
/// full or `flush` is called tokens are passed to the `block_writer`. Level
/// defines how hard (how slow) it tries to find match.
///
/// Block writer will decide which type of deflate block to write (stored, fixed,
/// dynamic) and encode tokens to the output byte stream. Client has to call
/// `finish` to write block with the final bit set.
///
/// Container defines type of header and footer which can be gzip, zlib or raw.
/// They all share same deflate body. Raw has no header or footer just deflate
/// body.
///
/// Compression algorithm explained in rfc-1951 (slightly edited for this case):
///
/// The compressor uses a chained hash table `lookup` to find duplicated
/// strings, using a hash function that operates on 4-byte sequences. At any
/// given point during compression, let XYZW be the next 4 input bytes
/// (lookahead) to be examined (not necessarily all different, of course).
/// First, the compressor examines the hash chain for XYZW. If the chain is
/// empty, the compressor simply writes out X as a literal byte and advances
/// one byte in the input. If the hash chain is not empty, indicating that the
/// sequence XYZW (or, if we are unlucky, some other 4 bytes with the same
/// hash function value) has occurred recently, the compressor compares all
/// strings on the XYZW hash chain with the actual input data sequence
/// starting at the current point, and selects the longest match.
///
/// To improve overall compression, the compressor defers the selection of
/// matches ("lazy matching"): after a match of length N has been found, the
/// compressor searches for a longer match starting at the next input byte. If
/// it finds a longer match, it truncates the previous match to a length of
/// one (thus producing a single literal byte) and then emits the longer
/// match. Otherwise, it emits the original match, and, as described above,
/// advances N bytes before continuing.
///
///
/// Allocates statically ~400K (192K lookup, 128K tokens, 64K window).
///
/// Deflate function accepts BlockWriterType so we can change that in test to test
/// just tokenization part.
///
fn Deflate(comptime container: Container, comptime WriterType: type, comptime BlockWriterType: type) type {
return struct {
lookup: Lookup = .{},
win: SlidingWindow = .{},
tokens: Tokens = .{},
wrt: WriterType,
block_writer: BlockWriterType,
level: LevelArgs,
hasher: container.Hasher() = .{},
// Match and literal at the previous position.
// Used for lazy match finding in processWindow.
prev_match: ?Token = null,
prev_literal: ?u8 = null,
const Self = @This();
pub fn init(wrt: WriterType, options: Options) !Self {
const self = Self{
.wrt = wrt,
.block_writer = BlockWriterType.init(wrt),
.level = LevelArgs.get(options.level),
};
try container.writeHeader(self.wrt);
return self;
}
const FlushOption = enum { none, flush, final };
// Process data in window and create tokens. If token buffer is full
// flush tokens to the token writer. In the case of `flush` or `final`
// option it will process all data from the window. In the `none` case
// it will preserve some data for the next match.
fn tokenize(self: *Self, flush_opt: FlushOption) !void {
// flush - process all data from window
const should_flush = (flush_opt != .none);
// While there is data in active lookahead buffer.
while (self.win.activeLookahead(should_flush)) |lh| {
var step: u16 = 1; // 1 in the case of literal, match length otherwise
const pos: u16 = self.win.pos();
const literal = lh[0]; // literal at current position
const min_len: u16 = if (self.prev_match) |m| m.length() else 0;
// Try to find match at least min_len long.
if (self.findMatch(pos, lh, min_len)) |match| {
// Found better match than previous.
try self.addPrevLiteral();
// Is found match length good enough?
if (match.length() >= self.level.lazy) {
// Don't try to lazy find better match, use this.
step = try self.addMatch(match);
} else {
// Store this match.
self.prev_literal = literal;
self.prev_match = match;
}
} else {
// There is no better match at current pos then it was previous.
// Write previous match or literal.
if (self.prev_match) |m| {
// Write match from previous position.
step = try self.addMatch(m) - 1; // we already advanced 1 from previous position
} else {
// No match at previous position.
// Write previous literal if any, and remember this literal.
try self.addPrevLiteral();
self.prev_literal = literal;
}
}
// Advance window and add hashes.
self.windowAdvance(step, lh, pos);
}
if (should_flush) {
// In the case of flushing, last few lookahead buffers were smaller then min match len.
// So only last literal can be unwritten.
assert(self.prev_match == null);
try self.addPrevLiteral();
self.prev_literal = null;
try self.flushTokens(flush_opt);
}
}
fn windowAdvance(self: *Self, step: u16, lh: []const u8, pos: u16) void {
// current position is already added in findMatch
self.lookup.bulkAdd(lh[1..], step - 1, pos + 1);
self.win.advance(step);
}
// Add previous literal (if any) to the tokens list.
fn addPrevLiteral(self: *Self) !void {
if (self.prev_literal) |l| try self.addToken(Token.initLiteral(l));
}
// Add match to the tokens list, reset prev pointers.
// Returns length of the added match.
fn addMatch(self: *Self, m: Token) !u16 {
try self.addToken(m);
self.prev_literal = null;
self.prev_match = null;
return m.length();
}
fn addToken(self: *Self, token: Token) !void {
self.tokens.add(token);
if (self.tokens.full()) try self.flushTokens(.none);
}
// Finds largest match in the history window with the data at current pos.
fn findMatch(self: *Self, pos: u16, lh: []const u8, min_len: u16) ?Token {
var len: u16 = min_len;
// Previous location with the same hash (same 4 bytes).
var prev_pos = self.lookup.add(lh, pos);
// Last found match.
var match: ?Token = null;
// How much back-references to try, performance knob.
var chain: usize = self.level.chain;
if (len >= self.level.good) {
// If we've got a match that's good enough, only look in 1/4 the chain.
chain >>= 2;
}
// Hot path loop!
while (prev_pos > 0 and chain > 0) : (chain -= 1) {
const distance = pos - prev_pos;
if (distance > consts.match.max_distance)
break;
const new_len = self.win.match(prev_pos, pos, len);
if (new_len > len) {
match = Token.initMatch(@intCast(distance), new_len);
if (new_len >= self.level.nice) {
// The match is good enough that we don't try to find a better one.
return match;
}
len = new_len;
}
prev_pos = self.lookup.prev(prev_pos);
}
return match;
}
fn flushTokens(self: *Self, flush_opt: FlushOption) !void {
// Pass tokens to the token writer
try self.block_writer.write(self.tokens.tokens(), flush_opt == .final, self.win.tokensBuffer());
// Stored block ensures byte alignment.
// It has 3 bits (final, block_type) and then padding until byte boundary.
// After that everything is aligned to the boundary in the stored block.
// Empty stored block is Ob000 + (0-7) bits of padding + 0x00 0x00 0xFF 0xFF.
// Last 4 bytes are byte aligned.
if (flush_opt == .flush) {
try self.block_writer.storedBlock("", false);
}
if (flush_opt != .none) {
// Safe to call only when byte aligned or it is OK to add
// padding bits (on last byte of the final block).
try self.block_writer.flush();
}
// Reset internal tokens store.
self.tokens.reset();
// Notify win that tokens are flushed.
self.win.flush();
}
// Slide win and if needed lookup tables.
fn slide(self: *Self) void {
const n = self.win.slide();
self.lookup.slide(n);
}
/// Compresses as much data as possible, stops when the reader becomes
/// empty. It will introduce some output latency (reading input without
/// producing all output) because some data are still in internal
/// buffers.
///
/// It is up to the caller to call flush (if needed) or finish (required)
/// when is need to output any pending data or complete stream.
///
pub fn compress(self: *Self, reader: anytype) !void {
while (true) {
// Fill window from reader
const buf = self.win.writable();
if (buf.len == 0) {
try self.tokenize(.none);
self.slide();
continue;
}
const n = try reader.readAll(buf);
self.hasher.update(buf[0..n]);
self.win.written(n);
// Process window
try self.tokenize(.none);
// Exit when no more data in reader
if (n < buf.len) break;
}
}
/// Flushes internal buffers to the output writer. Outputs empty stored
/// block to sync bit stream to the byte boundary, so that the
/// decompressor can get all input data available so far.
///
/// It is useful mainly in compressed network protocols, to ensure that
/// deflate bit stream can be used as byte stream. May degrade
/// compression so it should be used only when necessary.
///
/// Completes the current deflate block and follows it with an empty
/// stored block that is three zero bits plus filler bits to the next
/// byte, followed by four bytes (00 00 ff ff).
///
pub fn flush(self: *Self) !void {
try self.tokenize(.flush);
}
/// Completes deflate bit stream by writing any pending data as deflate
/// final deflate block. HAS to be called once all data are written to
/// the compressor as a signal that next block has to have final bit
/// set.
///
pub fn finish(self: *Self) !void {
try self.tokenize(.final);
try container.writeFooter(&self.hasher, self.wrt);
}
/// Use another writer while preserving history. Most probably flush
/// should be called on old writer before setting new.
pub fn setWriter(self: *Self, new_writer: WriterType) void {
self.block_writer.setWriter(new_writer);
self.wrt = new_writer;
}
// Writer interface
pub const Writer = io.GenericWriter(*Self, Error, write);
pub const Error = BlockWriterType.Error;
/// Write `input` of uncompressed data.
/// See compress.
pub fn write(self: *Self, input: []const u8) !usize {
var fbs = io.fixedBufferStream(input);
try self.compress(fbs.reader());
return input.len;
}
pub fn writer(self: *Self) Writer {
return .{ .context = self };
}
};
}
// Tokens store
const Tokens = struct {
list: [consts.deflate.tokens]Token = undefined,
pos: usize = 0,
fn add(self: *Tokens, t: Token) void {
self.list[self.pos] = t;
self.pos += 1;
}
fn full(self: *Tokens) bool {
return self.pos == self.list.len;
}
fn reset(self: *Tokens) void {
self.pos = 0;
}
fn tokens(self: *Tokens) []const Token {
return self.list[0..self.pos];
}
};
/// Creates huffman only deflate blocks. Disables Lempel-Ziv match searching and
/// only performs Huffman entropy encoding. Results in faster compression, much
/// less memory requirements during compression but bigger compressed sizes.
pub const huffman = struct {
pub fn compress(comptime container: Container, reader: anytype, writer: anytype) !void {
var c = try huffman.compressor(container, writer);
try c.compress(reader);
try c.finish();
}
pub fn Compressor(comptime container: Container, comptime WriterType: type) type {
return SimpleCompressor(.huffman, container, WriterType);
}
pub fn compressor(comptime container: Container, writer: anytype) !huffman.Compressor(container, @TypeOf(writer)) {
return try huffman.Compressor(container, @TypeOf(writer)).init(writer);
}
};
/// Creates store blocks only. Data are not compressed only packed into deflate
/// store blocks. That adds 9 bytes of header for each block. Max stored block
/// size is 64K. Block is emitted when flush is called on on finish.
pub const store = struct {
pub fn compress(comptime container: Container, reader: anytype, writer: anytype) !void {
var c = try store.compressor(container, writer);
try c.compress(reader);
try c.finish();
}
pub fn Compressor(comptime container: Container, comptime WriterType: type) type {
return SimpleCompressor(.store, container, WriterType);
}
pub fn compressor(comptime container: Container, writer: anytype) !store.Compressor(container, @TypeOf(writer)) {
return try store.Compressor(container, @TypeOf(writer)).init(writer);
}
};
const SimpleCompressorKind = enum {
huffman,
store,
};
fn simpleCompressor(
comptime kind: SimpleCompressorKind,
comptime container: Container,
writer: anytype,
) !SimpleCompressor(kind, container, @TypeOf(writer)) {
return try SimpleCompressor(kind, container, @TypeOf(writer)).init(writer);
}
fn SimpleCompressor(
comptime kind: SimpleCompressorKind,
comptime container: Container,
comptime WriterType: type,
) type {
const BlockWriterType = BlockWriter(WriterType);
return struct {
buffer: [65535]u8 = undefined, // because store blocks are limited to 65535 bytes
wp: usize = 0,
wrt: WriterType,
block_writer: BlockWriterType,
hasher: container.Hasher() = .{},
const Self = @This();
pub fn init(wrt: WriterType) !Self {
const self = Self{
.wrt = wrt,
.block_writer = BlockWriterType.init(wrt),
};
try container.writeHeader(self.wrt);
return self;
}
pub fn flush(self: *Self) !void {
try self.flushBuffer(false);
try self.block_writer.storedBlock("", false);
try self.block_writer.flush();
}
pub fn finish(self: *Self) !void {
try self.flushBuffer(true);
try self.block_writer.flush();
try container.writeFooter(&self.hasher, self.wrt);
}
fn flushBuffer(self: *Self, final: bool) !void {
const buf = self.buffer[0..self.wp];
switch (kind) {
.huffman => try self.block_writer.huffmanBlock(buf, final),
.store => try self.block_writer.storedBlock(buf, final),
}
self.wp = 0;
}
// Writes all data from the input reader of uncompressed data.
// It is up to the caller to call flush or finish if there is need to
// output compressed blocks.
pub fn compress(self: *Self, reader: anytype) !void {
while (true) {
// read from rdr into buffer
const buf = self.buffer[self.wp..];
if (buf.len == 0) {
try self.flushBuffer(false);
continue;
}
const n = try reader.readAll(buf);
self.hasher.update(buf[0..n]);
self.wp += n;
if (n < buf.len) break; // no more data in reader
}
}
// Writer interface
pub const Writer = io.GenericWriter(*Self, Error, write);
pub const Error = BlockWriterType.Error;
// Write `input` of uncompressed data.
pub fn write(self: *Self, input: []const u8) !usize {
var fbs = io.fixedBufferStream(input);
try self.compress(fbs.reader());
return input.len;
}
pub fn writer(self: *Self) Writer {
return .{ .context = self };
}
};
}
const builtin = @import("builtin");
test "tokenization" {
const L = Token.initLiteral;
const M = Token.initMatch;
const cases = [_]struct {
data: []const u8,
tokens: []const Token,
}{
.{
.data = "Blah blah blah blah blah!",
.tokens = &[_]Token{ L('B'), L('l'), L('a'), L('h'), L(' '), L('b'), M(5, 18), L('!') },
},
.{
.data = "ABCDEABCD ABCDEABCD",
.tokens = &[_]Token{
L('A'), L('B'), L('C'), L('D'), L('E'), L('A'), L('B'), L('C'), L('D'), L(' '),
L('A'), M(10, 8),
},
},
};
for (cases) |c| {
inline for (Container.list) |container| { // for each wrapping
var cw = io.countingWriter(io.null_writer);
const cww = cw.writer();
var df = try Deflate(container, @TypeOf(cww), TestTokenWriter).init(cww, .{});
_ = try df.write(c.data);
try df.flush();
// df.token_writer.show();
try expect(df.block_writer.pos == c.tokens.len); // number of tokens written
try testing.expectEqualSlices(Token, df.block_writer.get(), c.tokens); // tokens match
try testing.expectEqual(container.headerSize(), cw.bytes_written);
try df.finish();
try testing.expectEqual(container.size(), cw.bytes_written);
}
}
}
// Tests that tokens written are equal to expected token list.
const TestTokenWriter = struct {
const Self = @This();
pos: usize = 0,
actual: [128]Token = undefined,
pub fn init(_: anytype) Self {
return .{};
}
pub fn write(self: *Self, tokens: []const Token, _: bool, _: ?[]const u8) !void {
for (tokens) |t| {
self.actual[self.pos] = t;
self.pos += 1;
}
}
pub fn storedBlock(_: *Self, _: []const u8, _: bool) !void {}
pub fn get(self: *Self) []Token {
return self.actual[0..self.pos];
}
pub fn show(self: *Self) void {
print("\n", .{});
for (self.get()) |t| {
t.show();
}
}
pub fn flush(_: *Self) !void {}
};
test "file tokenization" {
const levels = [_]Level{ .level_4, .level_5, .level_6, .level_7, .level_8, .level_9 };
const cases = [_]struct {
data: []const u8, // uncompressed content
// expected number of tokens producet in deflate tokenization
tokens_count: [levels.len]usize = .{0} ** levels.len,
}{
.{
.data = @embedFile("testdata/rfc1951.txt"),
.tokens_count = .{ 7675, 7672, 7599, 7594, 7598, 7599 },
},
.{
.data = @embedFile("testdata/block_writer/huffman-null-max.input"),
.tokens_count = .{ 257, 257, 257, 257, 257, 257 },
},
.{
.data = @embedFile("testdata/block_writer/huffman-pi.input"),
.tokens_count = .{ 2570, 2564, 2564, 2564, 2564, 2564 },
},
.{
.data = @embedFile("testdata/block_writer/huffman-text.input"),
.tokens_count = .{ 235, 234, 234, 234, 234, 234 },
},
.{
.data = @embedFile("testdata/fuzz/roundtrip1.input"),
.tokens_count = .{ 333, 331, 331, 331, 331, 331 },
},
.{
.data = @embedFile("testdata/fuzz/roundtrip2.input"),
.tokens_count = .{ 334, 334, 334, 334, 334, 334 },
},
};
for (cases) |case| { // for each case
const data = case.data;
for (levels, 0..) |level, i| { // for each compression level
var original = io.fixedBufferStream(data);
// buffer for decompressed data
var al = std.ArrayList(u8).init(testing.allocator);
defer al.deinit();
const writer = al.writer();
// create compressor
const WriterType = @TypeOf(writer);
const TokenWriter = TokenDecoder(@TypeOf(writer));
var cmp = try Deflate(.raw, WriterType, TokenWriter).init(writer, .{ .level = level });
// Stream uncompressed `original` data to the compressor. It will
// produce tokens list and pass that list to the TokenDecoder. This
// TokenDecoder uses CircularBuffer from inflate to convert list of
// tokens back to the uncompressed stream.
try cmp.compress(original.reader());
try cmp.flush();
const expected_count = case.tokens_count[i];
const actual = cmp.block_writer.tokens_count;
if (expected_count == 0) {
print("actual token count {d}\n", .{actual});
} else {
try testing.expectEqual(expected_count, actual);
}
try testing.expectEqual(data.len, al.items.len);
try testing.expectEqualSlices(u8, data, al.items);
}
}
}
fn TokenDecoder(comptime WriterType: type) type {
return struct {
const CircularBuffer = @import("CircularBuffer.zig");
hist: CircularBuffer = .{},
wrt: WriterType,
tokens_count: usize = 0,
const Self = @This();
pub fn init(wrt: WriterType) Self {
return .{ .wrt = wrt };
}
pub fn write(self: *Self, tokens: []const Token, _: bool, _: ?[]const u8) !void {
self.tokens_count += tokens.len;
for (tokens) |t| {
switch (t.kind) {
.literal => self.hist.write(t.literal()),
.match => try self.hist.writeMatch(t.length(), t.distance()),
}
if (self.hist.free() < 285) try self.flushWin();
}
try self.flushWin();
}
pub fn storedBlock(_: *Self, _: []const u8, _: bool) !void {}
fn flushWin(self: *Self) !void {
while (true) {
const buf = self.hist.read();
if (buf.len == 0) break;
try self.wrt.writeAll(buf);
}
}
pub fn flush(_: *Self) !void {}
};
}
test "store simple compressor" {
const data = "Hello world!";
const expected = [_]u8{
0x1, // block type 0, final bit set
0xc, 0x0, // len = 12
0xf3, 0xff, // ~len
'H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', //
//0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x20, 0x77, 0x6f, 0x72, 0x6c, 0x64, 0x21,
};
var fbs = std.io.fixedBufferStream(data);
var al = std.ArrayList(u8).init(testing.allocator);
defer al.deinit();
var cmp = try store.compressor(.raw, al.writer());
try cmp.compress(fbs.reader());
try cmp.finish();
try testing.expectEqualSlices(u8, &expected, al.items);
fbs.reset();
try al.resize(0);
// huffman only compresoor will also emit store block for this small sample
var hc = try huffman.compressor(.raw, al.writer());
try hc.compress(fbs.reader());
try hc.finish();
try testing.expectEqualSlices(u8, &expected, al.items);
}

View File

@ -1,302 +0,0 @@
const std = @import("std");
const testing = std.testing;
pub const Symbol = packed struct {
pub const Kind = enum(u2) {
literal,
end_of_block,
match,
};
symbol: u8 = 0, // symbol from alphabet
code_bits: u4 = 0, // number of bits in code 0-15
kind: Kind = .literal,
code: u16 = 0, // huffman code of the symbol
next: u16 = 0, // pointer to the next symbol in linked list
// it is safe to use 0 as null pointer, when sorted 0 has shortest code and fits into lookup
// Sorting less than function.
pub fn asc(_: void, a: Symbol, b: Symbol) bool {
if (a.code_bits == b.code_bits) {
if (a.kind == b.kind) {
return a.symbol < b.symbol;
}
return @intFromEnum(a.kind) < @intFromEnum(b.kind);
}
return a.code_bits < b.code_bits;
}
};
pub const LiteralDecoder = HuffmanDecoder(286, 15, 9);
pub const DistanceDecoder = HuffmanDecoder(30, 15, 9);
pub const CodegenDecoder = HuffmanDecoder(19, 7, 7);
pub const Error = error{
InvalidCode,
OversubscribedHuffmanTree,
IncompleteHuffmanTree,
MissingEndOfBlockCode,
};
/// Creates huffman tree codes from list of code lengths (in `build`).
///
/// `find` then finds symbol for code bits. Code can be any length between 1 and
/// 15 bits. When calling `find` we don't know how many bits will be used to
/// find symbol. When symbol is returned it has code_bits field which defines
/// how much we should advance in bit stream.
///
/// Lookup table is used to map 15 bit int to symbol. Same symbol is written
/// many times in this table; 32K places for 286 (at most) symbols.
/// Small lookup table is optimization for faster search.
/// It is variation of the algorithm explained in [zlib](https://github.com/madler/zlib/blob/643e17b7498d12ab8d15565662880579692f769d/doc/algorithm.txt#L92)
/// with difference that we here use statically allocated arrays.
///
fn HuffmanDecoder(
comptime alphabet_size: u16,
comptime max_code_bits: u4,
comptime lookup_bits: u4,
) type {
const lookup_shift = max_code_bits - lookup_bits;
return struct {
// all symbols in alaphabet, sorted by code_len, symbol
symbols: [alphabet_size]Symbol = undefined,
// lookup table code -> symbol
lookup: [1 << lookup_bits]Symbol = undefined,
const Self = @This();
/// Generates symbols and lookup tables from list of code lens for each symbol.
pub fn generate(self: *Self, lens: []const u4) !void {
try checkCompleteness(lens);
// init alphabet with code_bits
for (self.symbols, 0..) |_, i| {
const cb: u4 = if (i < lens.len) lens[i] else 0;
self.symbols[i] = if (i < 256)
.{ .kind = .literal, .symbol = @intCast(i), .code_bits = cb }
else if (i == 256)
.{ .kind = .end_of_block, .symbol = 0xff, .code_bits = cb }
else
.{ .kind = .match, .symbol = @intCast(i - 257), .code_bits = cb };
}
std.sort.heap(Symbol, &self.symbols, {}, Symbol.asc);
// reset lookup table
for (0..self.lookup.len) |i| {
self.lookup[i] = .{};
}
// assign code to symbols
// reference: https://youtu.be/9_YEGLe33NA?list=PLU4IQLU9e_OrY8oASHx0u3IXAL9TOdidm&t=2639
var code: u16 = 0;
var idx: u16 = 0;
for (&self.symbols, 0..) |*sym, pos| {
if (sym.code_bits == 0) continue; // skip unused
sym.code = code;
const next_code = code + (@as(u16, 1) << (max_code_bits - sym.code_bits));
const next_idx = next_code >> lookup_shift;
if (next_idx > self.lookup.len or idx >= self.lookup.len) break;
if (sym.code_bits <= lookup_bits) {
// fill small lookup table
for (idx..next_idx) |j|
self.lookup[j] = sym.*;
} else {
// insert into linked table starting at root
const root = &self.lookup[idx];
const root_next = root.next;
root.next = @intCast(pos);
sym.next = root_next;
}
idx = next_idx;
code = next_code;
}
}
/// Given the list of code lengths check that it represents a canonical
/// Huffman code for n symbols.
///
/// Reference: https://github.com/madler/zlib/blob/5c42a230b7b468dff011f444161c0145b5efae59/contrib/puff/puff.c#L340
fn checkCompleteness(lens: []const u4) !void {
if (alphabet_size == 286)
if (lens[256] == 0) return error.MissingEndOfBlockCode;
var count = [_]u16{0} ** (@as(usize, max_code_bits) + 1);
var max: usize = 0;
for (lens) |n| {
if (n == 0) continue;
if (n > max) max = n;
count[n] += 1;
}
if (max == 0) // empty tree
return;
// check for an over-subscribed or incomplete set of lengths
var left: usize = 1; // one possible code of zero length
for (1..count.len) |len| {
left <<= 1; // one more bit, double codes left
if (count[len] > left)
return error.OversubscribedHuffmanTree;
left -= count[len]; // deduct count from possible codes
}
if (left > 0) { // left > 0 means incomplete
// incomplete code ok only for single length 1 code
if (max_code_bits > 7 and max == count[0] + count[1]) return;
return error.IncompleteHuffmanTree;
}
}
/// Finds symbol for lookup table code.
pub fn find(self: *Self, code: u16) !Symbol {
// try to find in lookup table
const idx = code >> lookup_shift;
const sym = self.lookup[idx];
if (sym.code_bits != 0) return sym;
// if not use linked list of symbols with same prefix
return self.findLinked(code, sym.next);
}
inline fn findLinked(self: *Self, code: u16, start: u16) !Symbol {
var pos = start;
while (pos > 0) {
const sym = self.symbols[pos];
const shift = max_code_bits - sym.code_bits;
// compare code_bits number of upper bits
if ((code ^ sym.code) >> shift == 0) return sym;
pos = sym.next;
}
return error.InvalidCode;
}
};
}
test "init/find" {
// example data from: https://youtu.be/SJPvNi4HrWQ?t=8423
const code_lens = [_]u4{ 4, 3, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 3, 2 };
var h: CodegenDecoder = .{};
try h.generate(&code_lens);
const expected = [_]struct {
sym: Symbol,
code: u16,
}{
.{
.code = 0b00_00000,
.sym = .{ .symbol = 3, .code_bits = 2 },
},
.{
.code = 0b01_00000,
.sym = .{ .symbol = 18, .code_bits = 2 },
},
.{
.code = 0b100_0000,
.sym = .{ .symbol = 1, .code_bits = 3 },
},
.{
.code = 0b101_0000,
.sym = .{ .symbol = 4, .code_bits = 3 },
},
.{
.code = 0b110_0000,
.sym = .{ .symbol = 17, .code_bits = 3 },
},
.{
.code = 0b1110_000,
.sym = .{ .symbol = 0, .code_bits = 4 },
},
.{
.code = 0b1111_000,
.sym = .{ .symbol = 16, .code_bits = 4 },
},
};
// unused symbols
for (0..12) |i| {
try testing.expectEqual(0, h.symbols[i].code_bits);
}
// used, from index 12
for (expected, 12..) |e, i| {
try testing.expectEqual(e.sym.symbol, h.symbols[i].symbol);
try testing.expectEqual(e.sym.code_bits, h.symbols[i].code_bits);
const sym_from_code = try h.find(e.code);
try testing.expectEqual(e.sym.symbol, sym_from_code.symbol);
}
// All possible codes for each symbol.
// Lookup table has 126 elements, to cover all possible 7 bit codes.
for (0b0000_000..0b0100_000) |c| // 0..32 (32)
try testing.expectEqual(3, (try h.find(@intCast(c))).symbol);
for (0b0100_000..0b1000_000) |c| // 32..64 (32)
try testing.expectEqual(18, (try h.find(@intCast(c))).symbol);
for (0b1000_000..0b1010_000) |c| // 64..80 (16)
try testing.expectEqual(1, (try h.find(@intCast(c))).symbol);
for (0b1010_000..0b1100_000) |c| // 80..96 (16)
try testing.expectEqual(4, (try h.find(@intCast(c))).symbol);
for (0b1100_000..0b1110_000) |c| // 96..112 (16)
try testing.expectEqual(17, (try h.find(@intCast(c))).symbol);
for (0b1110_000..0b1111_000) |c| // 112..120 (8)
try testing.expectEqual(0, (try h.find(@intCast(c))).symbol);
for (0b1111_000..0b1_0000_000) |c| // 120...128 (8)
try testing.expectEqual(16, (try h.find(@intCast(c))).symbol);
}
test "encode/decode literals" {
const LiteralEncoder = @import("huffman_encoder.zig").LiteralEncoder;
for (1..286) |j| { // for all different number of codes
var enc: LiteralEncoder = .{};
// create frequencies
var freq = [_]u16{0} ** 286;
freq[256] = 1; // ensure we have end of block code
for (&freq, 1..) |*f, i| {
if (i % j == 0)
f.* = @intCast(i);
}
// encoder from frequencies
enc.generate(&freq, 15);
// get code_lens from encoder
var code_lens = [_]u4{0} ** 286;
for (code_lens, 0..) |_, i| {
code_lens[i] = @intCast(enc.codes[i].len);
}
// generate decoder from code lens
var dec: LiteralDecoder = .{};
try dec.generate(&code_lens);
// expect decoder code to match original encoder code
for (dec.symbols) |s| {
if (s.code_bits == 0) continue;
const c_code: u16 = @bitReverse(@as(u15, @intCast(s.code)));
const symbol: u16 = switch (s.kind) {
.literal => s.symbol,
.end_of_block => 256,
.match => @as(u16, s.symbol) + 257,
};
const c = enc.codes[symbol];
try testing.expect(c.code == c_code);
}
// find each symbol by code
for (enc.codes) |c| {
if (c.len == 0) continue;
const s_code: u15 = @bitReverse(@as(u15, @intCast(c.code)));
const s = try dec.find(s_code);
try testing.expect(s.code == s_code);
try testing.expect(s.code_bits == c.len);
}
}
}

View File

@ -1,536 +0,0 @@
const std = @import("std");
const assert = std.debug.assert;
const math = std.math;
const mem = std.mem;
const sort = std.sort;
const testing = std.testing;
const consts = @import("consts.zig").huffman;
const LiteralNode = struct {
literal: u16,
freq: u16,
};
// Describes the state of the constructed tree for a given depth.
const LevelInfo = struct {
// Our level. for better printing
level: u32,
// The frequency of the last node at this level
last_freq: u32,
// The frequency of the next character to add to this level
next_char_freq: u32,
// The frequency of the next pair (from level below) to add to this level.
// Only valid if the "needed" value of the next lower level is 0.
next_pair_freq: u32,
// The number of chains remaining to generate for this level before moving
// up to the next level
needed: u32,
};
// hcode is a huffman code with a bit code and bit length.
pub const HuffCode = struct {
code: u16 = 0,
len: u16 = 0,
// set sets the code and length of an hcode.
fn set(self: *HuffCode, code: u16, length: u16) void {
self.len = length;
self.code = code;
}
};
pub fn HuffmanEncoder(comptime size: usize) type {
return struct {
codes: [size]HuffCode = undefined,
// Reusable buffer with the longest possible frequency table.
freq_cache: [consts.max_num_frequencies + 1]LiteralNode = undefined,
bit_count: [17]u32 = undefined,
lns: []LiteralNode = undefined, // sorted by literal, stored to avoid repeated allocation in generate
lfs: []LiteralNode = undefined, // sorted by frequency, stored to avoid repeated allocation in generate
const Self = @This();
// Update this Huffman Code object to be the minimum code for the specified frequency count.
//
// freq An array of frequencies, in which frequency[i] gives the frequency of literal i.
// max_bits The maximum number of bits to use for any literal.
pub fn generate(self: *Self, freq: []u16, max_bits: u32) void {
var list = self.freq_cache[0 .. freq.len + 1];
// Number of non-zero literals
var count: u32 = 0;
// Set list to be the set of all non-zero literals and their frequencies
for (freq, 0..) |f, i| {
if (f != 0) {
list[count] = LiteralNode{ .literal = @as(u16, @intCast(i)), .freq = f };
count += 1;
} else {
list[count] = LiteralNode{ .literal = 0x00, .freq = 0 };
self.codes[i].len = 0;
}
}
list[freq.len] = LiteralNode{ .literal = 0x00, .freq = 0 };
list = list[0..count];
if (count <= 2) {
// Handle the small cases here, because they are awkward for the general case code. With
// two or fewer literals, everything has bit length 1.
for (list, 0..) |node, i| {
// "list" is in order of increasing literal value.
self.codes[node.literal].set(@as(u16, @intCast(i)), 1);
}
return;
}
self.lfs = list;
mem.sort(LiteralNode, self.lfs, {}, byFreq);
// Get the number of literals for each bit count
const bit_count = self.bitCounts(list, max_bits);
// And do the assignment
self.assignEncodingAndSize(bit_count, list);
}
pub fn bitLength(self: *Self, freq: []u16) u32 {
var total: u32 = 0;
for (freq, 0..) |f, i| {
if (f != 0) {
total += @as(u32, @intCast(f)) * @as(u32, @intCast(self.codes[i].len));
}
}
return total;
}
// Return the number of literals assigned to each bit size in the Huffman encoding
//
// This method is only called when list.len >= 3
// The cases of 0, 1, and 2 literals are handled by special case code.
//
// list: An array of the literals with non-zero frequencies
// and their associated frequencies. The array is in order of increasing
// frequency, and has as its last element a special element with frequency
// std.math.maxInt(i32)
//
// max_bits: The maximum number of bits that should be used to encode any literal.
// Must be less than 16.
//
// Returns an integer array in which array[i] indicates the number of literals
// that should be encoded in i bits.
fn bitCounts(self: *Self, list: []LiteralNode, max_bits_to_use: usize) []u32 {
var max_bits = max_bits_to_use;
const n = list.len;
const max_bits_limit = 16;
assert(max_bits < max_bits_limit);
// The tree can't have greater depth than n - 1, no matter what. This
// saves a little bit of work in some small cases
max_bits = @min(max_bits, n - 1);
// Create information about each of the levels.
// A bogus "Level 0" whose sole purpose is so that
// level1.prev.needed == 0. This makes level1.next_pair_freq
// be a legitimate value that never gets chosen.
var levels: [max_bits_limit]LevelInfo = mem.zeroes([max_bits_limit]LevelInfo);
// leaf_counts[i] counts the number of literals at the left
// of ancestors of the rightmost node at level i.
// leaf_counts[i][j] is the number of literals at the left
// of the level j ancestor.
var leaf_counts: [max_bits_limit][max_bits_limit]u32 = mem.zeroes([max_bits_limit][max_bits_limit]u32);
{
var level = @as(u32, 1);
while (level <= max_bits) : (level += 1) {
// For every level, the first two items are the first two characters.
// We initialize the levels as if we had already figured this out.
levels[level] = LevelInfo{
.level = level,
.last_freq = list[1].freq,
.next_char_freq = list[2].freq,
.next_pair_freq = list[0].freq + list[1].freq,
.needed = 0,
};
leaf_counts[level][level] = 2;
if (level == 1) {
levels[level].next_pair_freq = math.maxInt(i32);
}
}
}
// We need a total of 2*n - 2 items at top level and have already generated 2.
levels[max_bits].needed = 2 * @as(u32, @intCast(n)) - 4;
{
var level = max_bits;
while (true) {
var l = &levels[level];
if (l.next_pair_freq == math.maxInt(i32) and l.next_char_freq == math.maxInt(i32)) {
// We've run out of both leaves and pairs.
// End all calculations for this level.
// To make sure we never come back to this level or any lower level,
// set next_pair_freq impossibly large.
l.needed = 0;
levels[level + 1].next_pair_freq = math.maxInt(i32);
level += 1;
continue;
}
const prev_freq = l.last_freq;
if (l.next_char_freq < l.next_pair_freq) {
// The next item on this row is a leaf node.
const next = leaf_counts[level][level] + 1;
l.last_freq = l.next_char_freq;
// Lower leaf_counts are the same of the previous node.
leaf_counts[level][level] = next;
if (next >= list.len) {
l.next_char_freq = maxNode().freq;
} else {
l.next_char_freq = list[next].freq;
}
} else {
// The next item on this row is a pair from the previous row.
// next_pair_freq isn't valid until we generate two
// more values in the level below
l.last_freq = l.next_pair_freq;
// Take leaf counts from the lower level, except counts[level] remains the same.
@memcpy(leaf_counts[level][0..level], leaf_counts[level - 1][0..level]);
levels[l.level - 1].needed = 2;
}
l.needed -= 1;
if (l.needed == 0) {
// We've done everything we need to do for this level.
// Continue calculating one level up. Fill in next_pair_freq
// of that level with the sum of the two nodes we've just calculated on
// this level.
if (l.level == max_bits) {
// All done!
break;
}
levels[l.level + 1].next_pair_freq = prev_freq + l.last_freq;
level += 1;
} else {
// If we stole from below, move down temporarily to replenish it.
while (levels[level - 1].needed > 0) {
level -= 1;
if (level == 0) {
break;
}
}
}
}
}
// Somethings is wrong if at the end, the top level is null or hasn't used
// all of the leaves.
assert(leaf_counts[max_bits][max_bits] == n);
var bit_count = self.bit_count[0 .. max_bits + 1];
var bits: u32 = 1;
const counts = &leaf_counts[max_bits];
{
var level = max_bits;
while (level > 0) : (level -= 1) {
// counts[level] gives the number of literals requiring at least "bits"
// bits to encode.
bit_count[bits] = counts[level] - counts[level - 1];
bits += 1;
if (level == 0) {
break;
}
}
}
return bit_count;
}
// Look at the leaves and assign them a bit count and an encoding as specified
// in RFC 1951 3.2.2
fn assignEncodingAndSize(self: *Self, bit_count: []u32, list_arg: []LiteralNode) void {
var code = @as(u16, 0);
var list = list_arg;
for (bit_count, 0..) |bits, n| {
code <<= 1;
if (n == 0 or bits == 0) {
continue;
}
// The literals list[list.len-bits] .. list[list.len-bits]
// are encoded using "bits" bits, and get the values
// code, code + 1, .... The code values are
// assigned in literal order (not frequency order).
const chunk = list[list.len - @as(u32, @intCast(bits)) ..];
self.lns = chunk;
mem.sort(LiteralNode, self.lns, {}, byLiteral);
for (chunk) |node| {
self.codes[node.literal] = HuffCode{
.code = bitReverse(u16, code, @as(u5, @intCast(n))),
.len = @as(u16, @intCast(n)),
};
code += 1;
}
list = list[0 .. list.len - @as(u32, @intCast(bits))];
}
}
};
}
fn maxNode() LiteralNode {
return LiteralNode{
.literal = math.maxInt(u16),
.freq = math.maxInt(u16),
};
}
pub fn huffmanEncoder(comptime size: u32) HuffmanEncoder(size) {
return .{};
}
pub const LiteralEncoder = HuffmanEncoder(consts.max_num_frequencies);
pub const DistanceEncoder = HuffmanEncoder(consts.distance_code_count);
pub const CodegenEncoder = HuffmanEncoder(19);
// Generates a HuffmanCode corresponding to the fixed literal table
pub fn fixedLiteralEncoder() LiteralEncoder {
var h: LiteralEncoder = undefined;
var ch: u16 = 0;
while (ch < consts.max_num_frequencies) : (ch += 1) {
var bits: u16 = undefined;
var size: u16 = undefined;
switch (ch) {
0...143 => {
// size 8, 000110000 .. 10111111
bits = ch + 48;
size = 8;
},
144...255 => {
// size 9, 110010000 .. 111111111
bits = ch + 400 - 144;
size = 9;
},
256...279 => {
// size 7, 0000000 .. 0010111
bits = ch - 256;
size = 7;
},
else => {
// size 8, 11000000 .. 11000111
bits = ch + 192 - 280;
size = 8;
},
}
h.codes[ch] = HuffCode{ .code = bitReverse(u16, bits, @as(u5, @intCast(size))), .len = size };
}
return h;
}
pub fn fixedDistanceEncoder() DistanceEncoder {
var h: DistanceEncoder = undefined;
for (h.codes, 0..) |_, ch| {
h.codes[ch] = HuffCode{ .code = bitReverse(u16, @as(u16, @intCast(ch)), 5), .len = 5 };
}
return h;
}
pub fn huffmanDistanceEncoder() DistanceEncoder {
var distance_freq = [1]u16{0} ** consts.distance_code_count;
distance_freq[0] = 1;
// huff_distance is a static distance encoder used for huffman only encoding.
// It can be reused since we will not be encoding distance values.
var h: DistanceEncoder = .{};
h.generate(distance_freq[0..], 15);
return h;
}
fn byLiteral(context: void, a: LiteralNode, b: LiteralNode) bool {
_ = context;
return a.literal < b.literal;
}
fn byFreq(context: void, a: LiteralNode, b: LiteralNode) bool {
_ = context;
if (a.freq == b.freq) {
return a.literal < b.literal;
}
return a.freq < b.freq;
}
test "generate a Huffman code from an array of frequencies" {
var freqs: [19]u16 = [_]u16{
8, // 0
1, // 1
1, // 2
2, // 3
5, // 4
10, // 5
9, // 6
1, // 7
0, // 8
0, // 9
0, // 10
0, // 11
0, // 12
0, // 13
0, // 14
0, // 15
1, // 16
3, // 17
5, // 18
};
var enc = huffmanEncoder(19);
enc.generate(freqs[0..], 7);
try testing.expectEqual(@as(u32, 141), enc.bitLength(freqs[0..]));
try testing.expectEqual(@as(usize, 3), enc.codes[0].len);
try testing.expectEqual(@as(usize, 6), enc.codes[1].len);
try testing.expectEqual(@as(usize, 6), enc.codes[2].len);
try testing.expectEqual(@as(usize, 5), enc.codes[3].len);
try testing.expectEqual(@as(usize, 3), enc.codes[4].len);
try testing.expectEqual(@as(usize, 2), enc.codes[5].len);
try testing.expectEqual(@as(usize, 2), enc.codes[6].len);
try testing.expectEqual(@as(usize, 6), enc.codes[7].len);
try testing.expectEqual(@as(usize, 0), enc.codes[8].len);
try testing.expectEqual(@as(usize, 0), enc.codes[9].len);
try testing.expectEqual(@as(usize, 0), enc.codes[10].len);
try testing.expectEqual(@as(usize, 0), enc.codes[11].len);
try testing.expectEqual(@as(usize, 0), enc.codes[12].len);
try testing.expectEqual(@as(usize, 0), enc.codes[13].len);
try testing.expectEqual(@as(usize, 0), enc.codes[14].len);
try testing.expectEqual(@as(usize, 0), enc.codes[15].len);
try testing.expectEqual(@as(usize, 6), enc.codes[16].len);
try testing.expectEqual(@as(usize, 5), enc.codes[17].len);
try testing.expectEqual(@as(usize, 3), enc.codes[18].len);
try testing.expectEqual(@as(u16, 0x0), enc.codes[5].code);
try testing.expectEqual(@as(u16, 0x2), enc.codes[6].code);
try testing.expectEqual(@as(u16, 0x1), enc.codes[0].code);
try testing.expectEqual(@as(u16, 0x5), enc.codes[4].code);
try testing.expectEqual(@as(u16, 0x3), enc.codes[18].code);
try testing.expectEqual(@as(u16, 0x7), enc.codes[3].code);
try testing.expectEqual(@as(u16, 0x17), enc.codes[17].code);
try testing.expectEqual(@as(u16, 0x0f), enc.codes[1].code);
try testing.expectEqual(@as(u16, 0x2f), enc.codes[2].code);
try testing.expectEqual(@as(u16, 0x1f), enc.codes[7].code);
try testing.expectEqual(@as(u16, 0x3f), enc.codes[16].code);
}
test "generate a Huffman code for the fixed literal table specific to Deflate" {
const enc = fixedLiteralEncoder();
for (enc.codes) |c| {
switch (c.len) {
7 => {
const v = @bitReverse(@as(u7, @intCast(c.code)));
try testing.expect(v <= 0b0010111);
},
8 => {
const v = @bitReverse(@as(u8, @intCast(c.code)));
try testing.expect((v >= 0b000110000 and v <= 0b10111111) or
(v >= 0b11000000 and v <= 11000111));
},
9 => {
const v = @bitReverse(@as(u9, @intCast(c.code)));
try testing.expect(v >= 0b110010000 and v <= 0b111111111);
},
else => unreachable,
}
}
}
test "generate a Huffman code for the 30 possible relative distances (LZ77 distances) of Deflate" {
const enc = fixedDistanceEncoder();
for (enc.codes) |c| {
const v = @bitReverse(@as(u5, @intCast(c.code)));
try testing.expect(v <= 29);
try testing.expect(c.len == 5);
}
}
// Reverse bit-by-bit a N-bit code.
fn bitReverse(comptime T: type, value: T, n: usize) T {
const r = @bitReverse(value);
return r >> @as(math.Log2Int(T), @intCast(@typeInfo(T).int.bits - n));
}
test bitReverse {
const ReverseBitsTest = struct {
in: u16,
bit_count: u5,
out: u16,
};
const reverse_bits_tests = [_]ReverseBitsTest{
.{ .in = 1, .bit_count = 1, .out = 1 },
.{ .in = 1, .bit_count = 2, .out = 2 },
.{ .in = 1, .bit_count = 3, .out = 4 },
.{ .in = 1, .bit_count = 4, .out = 8 },
.{ .in = 1, .bit_count = 5, .out = 16 },
.{ .in = 17, .bit_count = 5, .out = 17 },
.{ .in = 257, .bit_count = 9, .out = 257 },
.{ .in = 29, .bit_count = 5, .out = 23 },
};
for (reverse_bits_tests) |h| {
const v = bitReverse(u16, h.in, h.bit_count);
try std.testing.expectEqual(h.out, v);
}
}
test "fixedLiteralEncoder codes" {
var al = std.ArrayList(u8).init(testing.allocator);
defer al.deinit();
var bw = std.io.bitWriter(.little, al.writer());
const f = fixedLiteralEncoder();
for (f.codes) |c| {
try bw.writeBits(c.code, c.len);
}
try testing.expectEqualSlices(u8, &fixed_codes, al.items);
}
pub const fixed_codes = [_]u8{
0b00001100, 0b10001100, 0b01001100, 0b11001100, 0b00101100, 0b10101100, 0b01101100, 0b11101100,
0b00011100, 0b10011100, 0b01011100, 0b11011100, 0b00111100, 0b10111100, 0b01111100, 0b11111100,
0b00000010, 0b10000010, 0b01000010, 0b11000010, 0b00100010, 0b10100010, 0b01100010, 0b11100010,
0b00010010, 0b10010010, 0b01010010, 0b11010010, 0b00110010, 0b10110010, 0b01110010, 0b11110010,
0b00001010, 0b10001010, 0b01001010, 0b11001010, 0b00101010, 0b10101010, 0b01101010, 0b11101010,
0b00011010, 0b10011010, 0b01011010, 0b11011010, 0b00111010, 0b10111010, 0b01111010, 0b11111010,
0b00000110, 0b10000110, 0b01000110, 0b11000110, 0b00100110, 0b10100110, 0b01100110, 0b11100110,
0b00010110, 0b10010110, 0b01010110, 0b11010110, 0b00110110, 0b10110110, 0b01110110, 0b11110110,
0b00001110, 0b10001110, 0b01001110, 0b11001110, 0b00101110, 0b10101110, 0b01101110, 0b11101110,
0b00011110, 0b10011110, 0b01011110, 0b11011110, 0b00111110, 0b10111110, 0b01111110, 0b11111110,
0b00000001, 0b10000001, 0b01000001, 0b11000001, 0b00100001, 0b10100001, 0b01100001, 0b11100001,
0b00010001, 0b10010001, 0b01010001, 0b11010001, 0b00110001, 0b10110001, 0b01110001, 0b11110001,
0b00001001, 0b10001001, 0b01001001, 0b11001001, 0b00101001, 0b10101001, 0b01101001, 0b11101001,
0b00011001, 0b10011001, 0b01011001, 0b11011001, 0b00111001, 0b10111001, 0b01111001, 0b11111001,
0b00000101, 0b10000101, 0b01000101, 0b11000101, 0b00100101, 0b10100101, 0b01100101, 0b11100101,
0b00010101, 0b10010101, 0b01010101, 0b11010101, 0b00110101, 0b10110101, 0b01110101, 0b11110101,
0b00001101, 0b10001101, 0b01001101, 0b11001101, 0b00101101, 0b10101101, 0b01101101, 0b11101101,
0b00011101, 0b10011101, 0b01011101, 0b11011101, 0b00111101, 0b10111101, 0b01111101, 0b11111101,
0b00010011, 0b00100110, 0b01001110, 0b10011010, 0b00111100, 0b01100101, 0b11101010, 0b10110100,
0b11101001, 0b00110011, 0b01100110, 0b11001110, 0b10011010, 0b00111101, 0b01100111, 0b11101110,
0b10111100, 0b11111001, 0b00001011, 0b00010110, 0b00101110, 0b01011010, 0b10111100, 0b01100100,
0b11101001, 0b10110010, 0b11100101, 0b00101011, 0b01010110, 0b10101110, 0b01011010, 0b10111101,
0b01100110, 0b11101101, 0b10111010, 0b11110101, 0b00011011, 0b00110110, 0b01101110, 0b11011010,
0b10111100, 0b01100101, 0b11101011, 0b10110110, 0b11101101, 0b00111011, 0b01110110, 0b11101110,
0b11011010, 0b10111101, 0b01100111, 0b11101111, 0b10111110, 0b11111101, 0b00000111, 0b00001110,
0b00011110, 0b00111010, 0b01111100, 0b11100100, 0b11101000, 0b10110001, 0b11100011, 0b00100111,
0b01001110, 0b10011110, 0b00111010, 0b01111101, 0b11100110, 0b11101100, 0b10111001, 0b11110011,
0b00010111, 0b00101110, 0b01011110, 0b10111010, 0b01111100, 0b11100101, 0b11101010, 0b10110101,
0b11101011, 0b00110111, 0b01101110, 0b11011110, 0b10111010, 0b01111101, 0b11100111, 0b11101110,
0b10111101, 0b11111011, 0b00001111, 0b00011110, 0b00111110, 0b01111010, 0b11111100, 0b11100100,
0b11101001, 0b10110011, 0b11100111, 0b00101111, 0b01011110, 0b10111110, 0b01111010, 0b11111101,
0b11100110, 0b11101101, 0b10111011, 0b11110111, 0b00011111, 0b00111110, 0b01111110, 0b11111010,
0b11111100, 0b11100101, 0b11101011, 0b10110111, 0b11101111, 0b00111111, 0b01111110, 0b11111110,
0b11111010, 0b11111101, 0b11100111, 0b11101111, 0b10111111, 0b11111111, 0b00000000, 0b00100000,
0b00001000, 0b00001100, 0b10000001, 0b11000010, 0b11100000, 0b00001000, 0b00100100, 0b00001010,
0b10001101, 0b11000001, 0b11100010, 0b11110000, 0b00000100, 0b00100010, 0b10001001, 0b01001100,
0b10100001, 0b11010010, 0b11101000, 0b00000011, 0b10000011, 0b01000011, 0b11000011, 0b00100011,
0b10100011,
};

View File

@ -1,570 +0,0 @@
const std = @import("std");
const assert = std.debug.assert;
const testing = std.testing;
const hfd = @import("huffman_decoder.zig");
const BitReader = @import("bit_reader.zig").BitReader;
const CircularBuffer = @import("CircularBuffer.zig");
const Container = @import("container.zig").Container;
const Token = @import("Token.zig");
const codegen_order = @import("consts.zig").huffman.codegen_order;
/// Decompresses deflate bit stream `reader` and writes uncompressed data to the
/// `writer` stream.
pub fn decompress(comptime container: Container, reader: anytype, writer: anytype) !void {
var d = decompressor(container, reader);
try d.decompress(writer);
}
/// Inflate decompressor for the reader type.
pub fn decompressor(comptime container: Container, reader: anytype) Decompressor(container, @TypeOf(reader)) {
return Decompressor(container, @TypeOf(reader)).init(reader);
}
pub fn Decompressor(comptime container: Container, comptime ReaderType: type) type {
// zlib has 4 bytes footer, lookahead of 4 bytes ensures that we will not overshoot.
// gzip has 8 bytes footer so we will not overshoot even with 8 bytes of lookahead.
// For raw deflate there is always possibility of overshot so we use 8 bytes lookahead.
const lookahead: type = if (container == .zlib) u32 else u64;
return Inflate(container, lookahead, ReaderType);
}
/// Inflate decompresses deflate bit stream. Reads compressed data from reader
/// provided in init. Decompressed data are stored in internal hist buffer and
/// can be accesses iterable `next` or reader interface.
///
/// Container defines header/footer wrapper around deflate bit stream. Can be
/// gzip or zlib.
///
/// Deflate bit stream consists of multiple blocks. Block can be one of three types:
/// * stored, non compressed, max 64k in size
/// * fixed, huffman codes are predefined
/// * dynamic, huffman code tables are encoded at the block start
///
/// `step` function runs decoder until internal `hist` buffer is full. Client
/// than needs to read that data in order to proceed with decoding.
///
/// Allocates 74.5K of internal buffers, most important are:
/// * 64K for history (CircularBuffer)
/// * ~10K huffman decoders (Literal and DistanceDecoder)
///
pub fn Inflate(comptime container: Container, comptime LookaheadType: type, comptime ReaderType: type) type {
assert(LookaheadType == u32 or LookaheadType == u64);
const BitReaderType = BitReader(LookaheadType, ReaderType);
return struct {
//const BitReaderType = BitReader(ReaderType);
const F = BitReaderType.flag;
bits: BitReaderType = .{},
hist: CircularBuffer = .{},
// Hashes, produces checkusm, of uncompressed data for gzip/zlib footer.
hasher: container.Hasher() = .{},
// dynamic block huffman code decoders
lit_dec: hfd.LiteralDecoder = .{}, // literals
dst_dec: hfd.DistanceDecoder = .{}, // distances
// current read state
bfinal: u1 = 0,
block_type: u2 = 0b11,
state: ReadState = .protocol_header,
const ReadState = enum {
protocol_header,
block_header,
block,
protocol_footer,
end,
};
const Self = @This();
pub const Error = BitReaderType.Error || Container.Error || hfd.Error || error{
InvalidCode,
InvalidMatch,
InvalidBlockType,
WrongStoredBlockNlen,
InvalidDynamicBlockHeader,
};
pub fn init(rt: ReaderType) Self {
return .{ .bits = BitReaderType.init(rt) };
}
fn blockHeader(self: *Self) !void {
self.bfinal = try self.bits.read(u1);
self.block_type = try self.bits.read(u2);
}
fn storedBlock(self: *Self) !bool {
self.bits.alignToByte(); // skip padding until byte boundary
// everything after this is byte aligned in stored block
var len = try self.bits.read(u16);
const nlen = try self.bits.read(u16);
if (len != ~nlen) return error.WrongStoredBlockNlen;
while (len > 0) {
const buf = self.hist.getWritable(len);
try self.bits.readAll(buf);
len -= @intCast(buf.len);
}
return true;
}
fn fixedBlock(self: *Self) !bool {
while (!self.hist.full()) {
const code = try self.bits.readFixedCode();
switch (code) {
0...255 => self.hist.write(@intCast(code)),
256 => return true, // end of block
257...285 => try self.fixedDistanceCode(@intCast(code - 257)),
else => return error.InvalidCode,
}
}
return false;
}
// Handles fixed block non literal (length) code.
// Length code is followed by 5 bits of distance code.
fn fixedDistanceCode(self: *Self, code: u8) !void {
try self.bits.fill(5 + 5 + 13);
const length = try self.decodeLength(code);
const distance = try self.decodeDistance(try self.bits.readF(u5, F.buffered | F.reverse));
try self.hist.writeMatch(length, distance);
}
inline fn decodeLength(self: *Self, code: u8) !u16 {
if (code > 28) return error.InvalidCode;
const ml = Token.matchLength(code);
return if (ml.extra_bits == 0) // 0 - 5 extra bits
ml.base
else
ml.base + try self.bits.readN(ml.extra_bits, F.buffered);
}
fn decodeDistance(self: *Self, code: u8) !u16 {
if (code > 29) return error.InvalidCode;
const md = Token.matchDistance(code);
return if (md.extra_bits == 0) // 0 - 13 extra bits
md.base
else
md.base + try self.bits.readN(md.extra_bits, F.buffered);
}
fn dynamicBlockHeader(self: *Self) !void {
const hlit: u16 = @as(u16, try self.bits.read(u5)) + 257; // number of ll code entries present - 257
const hdist: u16 = @as(u16, try self.bits.read(u5)) + 1; // number of distance code entries - 1
const hclen: u8 = @as(u8, try self.bits.read(u4)) + 4; // hclen + 4 code lengths are encoded
if (hlit > 286 or hdist > 30)
return error.InvalidDynamicBlockHeader;
// lengths for code lengths
var cl_lens = [_]u4{0} ** 19;
for (0..hclen) |i| {
cl_lens[codegen_order[i]] = try self.bits.read(u3);
}
var cl_dec: hfd.CodegenDecoder = .{};
try cl_dec.generate(&cl_lens);
// decoded code lengths
var dec_lens = [_]u4{0} ** (286 + 30);
var pos: usize = 0;
while (pos < hlit + hdist) {
const sym = try cl_dec.find(try self.bits.peekF(u7, F.reverse));
try self.bits.shift(sym.code_bits);
pos += try self.dynamicCodeLength(sym.symbol, &dec_lens, pos);
}
if (pos > hlit + hdist) {
return error.InvalidDynamicBlockHeader;
}
// literal code lengths to literal decoder
try self.lit_dec.generate(dec_lens[0..hlit]);
// distance code lengths to distance decoder
try self.dst_dec.generate(dec_lens[hlit .. hlit + hdist]);
}
// Decode code length symbol to code length. Writes decoded length into
// lens slice starting at position pos. Returns number of positions
// advanced.
fn dynamicCodeLength(self: *Self, code: u16, lens: []u4, pos: usize) !usize {
if (pos >= lens.len)
return error.InvalidDynamicBlockHeader;
switch (code) {
0...15 => {
// Represent code lengths of 0 - 15
lens[pos] = @intCast(code);
return 1;
},
16 => {
// Copy the previous code length 3 - 6 times.
// The next 2 bits indicate repeat length
const n: u8 = @as(u8, try self.bits.read(u2)) + 3;
if (pos == 0 or pos + n > lens.len)
return error.InvalidDynamicBlockHeader;
for (0..n) |i| {
lens[pos + i] = lens[pos + i - 1];
}
return n;
},
// Repeat a code length of 0 for 3 - 10 times. (3 bits of length)
17 => return @as(u8, try self.bits.read(u3)) + 3,
// Repeat a code length of 0 for 11 - 138 times (7 bits of length)
18 => return @as(u8, try self.bits.read(u7)) + 11,
else => return error.InvalidDynamicBlockHeader,
}
}
// In larger archives most blocks are usually dynamic, so decompression
// performance depends on this function.
fn dynamicBlock(self: *Self) !bool {
// Hot path loop!
while (!self.hist.full()) {
try self.bits.fill(15); // optimization so other bit reads can be buffered (avoiding one `if` in hot path)
const sym = try self.decodeSymbol(&self.lit_dec);
switch (sym.kind) {
.literal => self.hist.write(sym.symbol),
.match => { // Decode match backreference <length, distance>
// fill so we can use buffered reads
if (LookaheadType == u32)
try self.bits.fill(5 + 15)
else
try self.bits.fill(5 + 15 + 13);
const length = try self.decodeLength(sym.symbol);
const dsm = try self.decodeSymbol(&self.dst_dec);
if (LookaheadType == u32) try self.bits.fill(13);
const distance = try self.decodeDistance(dsm.symbol);
try self.hist.writeMatch(length, distance);
},
.end_of_block => return true,
}
}
return false;
}
// Peek 15 bits from bits reader (maximum code len is 15 bits). Use
// decoder to find symbol for that code. We then know how many bits is
// used. Shift bit reader for that much bits, those bits are used. And
// return symbol.
fn decodeSymbol(self: *Self, decoder: anytype) !hfd.Symbol {
const sym = try decoder.find(try self.bits.peekF(u15, F.buffered | F.reverse));
try self.bits.shift(sym.code_bits);
return sym;
}
fn step(self: *Self) !void {
switch (self.state) {
.protocol_header => {
try container.parseHeader(&self.bits);
self.state = .block_header;
},
.block_header => {
try self.blockHeader();
self.state = .block;
if (self.block_type == 2) try self.dynamicBlockHeader();
},
.block => {
const done = switch (self.block_type) {
0 => try self.storedBlock(),
1 => try self.fixedBlock(),
2 => try self.dynamicBlock(),
else => return error.InvalidBlockType,
};
if (done) {
self.state = if (self.bfinal == 1) .protocol_footer else .block_header;
}
},
.protocol_footer => {
self.bits.alignToByte();
try container.parseFooter(&self.hasher, &self.bits);
self.state = .end;
},
.end => {},
}
}
/// Replaces the inner reader with new reader.
pub fn setReader(self: *Self, new_reader: ReaderType) void {
self.bits.forward_reader = new_reader;
if (self.state == .end or self.state == .protocol_footer) {
self.state = .protocol_header;
}
}
// Reads all compressed data from the internal reader and outputs plain
// (uncompressed) data to the provided writer.
pub fn decompress(self: *Self, writer: anytype) !void {
while (try self.next()) |buf| {
try writer.writeAll(buf);
}
}
/// Returns the number of bytes that have been read from the internal
/// reader but not yet consumed by the decompressor.
pub fn unreadBytes(self: Self) usize {
// There can be no error here: the denominator is not zero, and
// overflow is not possible since the type is unsigned.
return std.math.divCeil(usize, self.bits.nbits, 8) catch unreachable;
}
// Iterator interface
/// Can be used in iterator like loop without memcpy to another buffer:
/// while (try inflate.next()) |buf| { ... }
pub fn next(self: *Self) Error!?[]const u8 {
const out = try self.get(0);
if (out.len == 0) return null;
return out;
}
/// Returns decompressed data from internal sliding window buffer.
/// Returned buffer can be any length between 0 and `limit` bytes. 0
/// returned bytes means end of stream reached. With limit=0 returns as
/// much data it can. It newer will be more than 65536 bytes, which is
/// size of internal buffer.
pub fn get(self: *Self, limit: usize) Error![]const u8 {
while (true) {
const out = self.hist.readAtMost(limit);
if (out.len > 0) {
self.hasher.update(out);
return out;
}
if (self.state == .end) return out;
try self.step();
}
}
// Reader interface
pub const Reader = std.io.GenericReader(*Self, Error, read);
/// Returns the number of bytes read. It may be less than buffer.len.
/// If the number of bytes read is 0, it means end of stream.
/// End of stream is not an error condition.
pub fn read(self: *Self, buffer: []u8) Error!usize {
if (buffer.len == 0) return 0;
const out = try self.get(buffer.len);
@memcpy(buffer[0..out.len], out);
return out.len;
}
pub fn reader(self: *Self) Reader {
return .{ .context = self };
}
};
}
test "decompress" {
const cases = [_]struct {
in: []const u8,
out: []const u8,
}{
// non compressed block (type 0)
.{
.in = &[_]u8{
0b0000_0001, 0b0000_1100, 0x00, 0b1111_0011, 0xff, // deflate fixed buffer header len, nlen
'H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', 0x0a, // non compressed data
},
.out = "Hello world\n",
},
// fixed code block (type 1)
.{
.in = &[_]u8{
0xf3, 0x48, 0xcd, 0xc9, 0xc9, 0x57, 0x28, 0xcf, // deflate data block type 1
0x2f, 0xca, 0x49, 0xe1, 0x02, 0x00,
},
.out = "Hello world\n",
},
// dynamic block (type 2)
.{
.in = &[_]u8{
0x3d, 0xc6, 0x39, 0x11, 0x00, 0x00, 0x0c, 0x02, // deflate data block type 2
0x30, 0x2b, 0xb5, 0x52, 0x1e, 0xff, 0x96, 0x38,
0x16, 0x96, 0x5c, 0x1e, 0x94, 0xcb, 0x6d, 0x01,
},
.out = "ABCDEABCD ABCDEABCD",
},
};
for (cases) |c| {
var fb = std.io.fixedBufferStream(c.in);
var al = std.ArrayList(u8).init(testing.allocator);
defer al.deinit();
try decompress(.raw, fb.reader(), al.writer());
try testing.expectEqualStrings(c.out, al.items);
}
}
test "gzip decompress" {
const cases = [_]struct {
in: []const u8,
out: []const u8,
}{
// non compressed block (type 0)
.{
.in = &[_]u8{
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, // gzip header (10 bytes)
0b0000_0001, 0b0000_1100, 0x00, 0b1111_0011, 0xff, // deflate fixed buffer header len, nlen
'H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', 0x0a, // non compressed data
0xd5, 0xe0, 0x39, 0xb7, // gzip footer: checksum
0x0c, 0x00, 0x00, 0x00, // gzip footer: size
},
.out = "Hello world\n",
},
// fixed code block (type 1)
.{
.in = &[_]u8{
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x03, // gzip header (10 bytes)
0xf3, 0x48, 0xcd, 0xc9, 0xc9, 0x57, 0x28, 0xcf, // deflate data block type 1
0x2f, 0xca, 0x49, 0xe1, 0x02, 0x00,
0xd5, 0xe0, 0x39, 0xb7, 0x0c, 0x00, 0x00, 0x00, // gzip footer (chksum, len)
},
.out = "Hello world\n",
},
// dynamic block (type 2)
.{
.in = &[_]u8{
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, // gzip header (10 bytes)
0x3d, 0xc6, 0x39, 0x11, 0x00, 0x00, 0x0c, 0x02, // deflate data block type 2
0x30, 0x2b, 0xb5, 0x52, 0x1e, 0xff, 0x96, 0x38,
0x16, 0x96, 0x5c, 0x1e, 0x94, 0xcb, 0x6d, 0x01,
0x17, 0x1c, 0x39, 0xb4, 0x13, 0x00, 0x00, 0x00, // gzip footer (chksum, len)
},
.out = "ABCDEABCD ABCDEABCD",
},
// gzip header with name
.{
.in = &[_]u8{
0x1f, 0x8b, 0x08, 0x08, 0xe5, 0x70, 0xb1, 0x65, 0x00, 0x03, 0x68, 0x65, 0x6c, 0x6c, 0x6f, 0x2e,
0x74, 0x78, 0x74, 0x00, 0xf3, 0x48, 0xcd, 0xc9, 0xc9, 0x57, 0x28, 0xcf, 0x2f, 0xca, 0x49, 0xe1,
0x02, 0x00, 0xd5, 0xe0, 0x39, 0xb7, 0x0c, 0x00, 0x00, 0x00,
},
.out = "Hello world\n",
},
};
for (cases) |c| {
var fb = std.io.fixedBufferStream(c.in);
var al = std.ArrayList(u8).init(testing.allocator);
defer al.deinit();
try decompress(.gzip, fb.reader(), al.writer());
try testing.expectEqualStrings(c.out, al.items);
}
}
test "zlib decompress" {
const cases = [_]struct {
in: []const u8,
out: []const u8,
}{
// non compressed block (type 0)
.{
.in = &[_]u8{
0x78, 0b10_0_11100, // zlib header (2 bytes)
0b0000_0001, 0b0000_1100, 0x00, 0b1111_0011, 0xff, // deflate fixed buffer header len, nlen
'H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', 0x0a, // non compressed data
0x1c, 0xf2, 0x04, 0x47, // zlib footer: checksum
},
.out = "Hello world\n",
},
};
for (cases) |c| {
var fb = std.io.fixedBufferStream(c.in);
var al = std.ArrayList(u8).init(testing.allocator);
defer al.deinit();
try decompress(.zlib, fb.reader(), al.writer());
try testing.expectEqualStrings(c.out, al.items);
}
}
test "fuzzing tests" {
const cases = [_]struct {
input: []const u8,
out: []const u8 = "",
err: ?anyerror = null,
}{
.{ .input = "deflate-stream", .out = @embedFile("testdata/fuzz/deflate-stream.expect") }, // 0
.{ .input = "empty-distance-alphabet01" },
.{ .input = "empty-distance-alphabet02" },
.{ .input = "end-of-stream", .err = error.EndOfStream },
.{ .input = "invalid-distance", .err = error.InvalidMatch },
.{ .input = "invalid-tree01", .err = error.IncompleteHuffmanTree }, // 5
.{ .input = "invalid-tree02", .err = error.IncompleteHuffmanTree },
.{ .input = "invalid-tree03", .err = error.IncompleteHuffmanTree },
.{ .input = "lengths-overflow", .err = error.InvalidDynamicBlockHeader },
.{ .input = "out-of-codes", .err = error.InvalidCode },
.{ .input = "puff01", .err = error.WrongStoredBlockNlen }, // 10
.{ .input = "puff02", .err = error.EndOfStream },
.{ .input = "puff03", .out = &[_]u8{0xa} },
.{ .input = "puff04", .err = error.InvalidCode },
.{ .input = "puff05", .err = error.EndOfStream },
.{ .input = "puff06", .err = error.EndOfStream },
.{ .input = "puff08", .err = error.InvalidCode },
.{ .input = "puff09", .out = "P" },
.{ .input = "puff10", .err = error.InvalidCode },
.{ .input = "puff11", .err = error.InvalidMatch },
.{ .input = "puff12", .err = error.InvalidDynamicBlockHeader }, // 20
.{ .input = "puff13", .err = error.IncompleteHuffmanTree },
.{ .input = "puff14", .err = error.EndOfStream },
.{ .input = "puff15", .err = error.IncompleteHuffmanTree },
.{ .input = "puff16", .err = error.InvalidDynamicBlockHeader },
.{ .input = "puff17", .err = error.MissingEndOfBlockCode }, // 25
.{ .input = "fuzz1", .err = error.InvalidDynamicBlockHeader },
.{ .input = "fuzz2", .err = error.InvalidDynamicBlockHeader },
.{ .input = "fuzz3", .err = error.InvalidMatch },
.{ .input = "fuzz4", .err = error.OversubscribedHuffmanTree },
.{ .input = "puff18", .err = error.OversubscribedHuffmanTree }, // 30
.{ .input = "puff19", .err = error.OversubscribedHuffmanTree },
.{ .input = "puff20", .err = error.OversubscribedHuffmanTree },
.{ .input = "puff21", .err = error.OversubscribedHuffmanTree },
.{ .input = "puff22", .err = error.OversubscribedHuffmanTree },
.{ .input = "puff23", .err = error.OversubscribedHuffmanTree }, // 35
.{ .input = "puff24", .err = error.IncompleteHuffmanTree },
.{ .input = "puff25", .err = error.OversubscribedHuffmanTree },
.{ .input = "puff26", .err = error.InvalidDynamicBlockHeader },
.{ .input = "puff27", .err = error.InvalidDynamicBlockHeader },
};
inline for (cases, 0..) |c, case_no| {
var in = std.io.fixedBufferStream(@embedFile("testdata/fuzz/" ++ c.input ++ ".input"));
var out = std.ArrayList(u8).init(testing.allocator);
defer out.deinit();
errdefer std.debug.print("test case failed {}\n", .{case_no});
if (c.err) |expected_err| {
try testing.expectError(expected_err, decompress(.raw, in.reader(), out.writer()));
} else {
try decompress(.raw, in.reader(), out.writer());
try testing.expectEqualStrings(c.out, out.items);
}
}
}
test "bug 18966" {
const input = @embedFile("testdata/fuzz/bug_18966.input");
const expect = @embedFile("testdata/fuzz/bug_18966.expect");
var in = std.io.fixedBufferStream(input);
var out = std.ArrayList(u8).init(testing.allocator);
defer out.deinit();
try decompress(.gzip, in.reader(), out.writer());
try testing.expectEqualStrings(expect, out.items);
}
test "bug 19895" {
const input = &[_]u8{
0b0000_0001, 0b0000_1100, 0x00, 0b1111_0011, 0xff, // deflate fixed buffer header len, nlen
'H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', 0x0a, // non compressed data
};
var in = std.io.fixedBufferStream(input);
var decomp = decompressor(.raw, in.reader());
var buf: [0]u8 = undefined;
try testing.expectEqual(0, try decomp.read(&buf));
}

View File

@ -1,66 +0,0 @@
const deflate = @import("flate/deflate.zig");
const inflate = @import("flate/inflate.zig");
/// Decompress compressed data from reader and write plain data to the writer.
pub fn decompress(reader: anytype, writer: anytype) !void {
try inflate.decompress(.gzip, reader, writer);
}
/// Decompressor type
pub fn Decompressor(comptime ReaderType: type) type {
return inflate.Decompressor(.gzip, ReaderType);
}
/// Create Decompressor which will read compressed data from reader.
pub fn decompressor(reader: anytype) Decompressor(@TypeOf(reader)) {
return inflate.decompressor(.gzip, reader);
}
/// Compression level, trades between speed and compression size.
pub const Options = deflate.Options;
/// Compress plain data from reader and write compressed data to the writer.
pub fn compress(reader: anytype, writer: anytype, options: Options) !void {
try deflate.compress(.gzip, reader, writer, options);
}
/// Compressor type
pub fn Compressor(comptime WriterType: type) type {
return deflate.Compressor(.gzip, WriterType);
}
/// Create Compressor which outputs compressed data to the writer.
pub fn compressor(writer: anytype, options: Options) !Compressor(@TypeOf(writer)) {
return try deflate.compressor(.gzip, writer, options);
}
/// Huffman only compression. Without Lempel-Ziv match searching. Faster
/// compression, less memory requirements but bigger compressed sizes.
pub const huffman = struct {
pub fn compress(reader: anytype, writer: anytype) !void {
try deflate.huffman.compress(.gzip, reader, writer);
}
pub fn Compressor(comptime WriterType: type) type {
return deflate.huffman.Compressor(.gzip, WriterType);
}
pub fn compressor(writer: anytype) !huffman.Compressor(@TypeOf(writer)) {
return deflate.huffman.compressor(.gzip, writer);
}
};
// No compression store only. Compressed size is slightly bigger than plain.
pub const store = struct {
pub fn compress(reader: anytype, writer: anytype) !void {
try deflate.store.compress(.gzip, reader, writer);
}
pub fn Compressor(comptime WriterType: type) type {
return deflate.store.Compressor(.gzip, WriterType);
}
pub fn compressor(writer: anytype) !store.Compressor(@TypeOf(writer)) {
return deflate.store.compressor(.gzip, writer);
}
};

View File

@ -1,101 +0,0 @@
const deflate = @import("flate/deflate.zig");
const inflate = @import("flate/inflate.zig");
/// Decompress compressed data from reader and write plain data to the writer.
pub fn decompress(reader: anytype, writer: anytype) !void {
try inflate.decompress(.zlib, reader, writer);
}
/// Decompressor type
pub fn Decompressor(comptime ReaderType: type) type {
return inflate.Decompressor(.zlib, ReaderType);
}
/// Create Decompressor which will read compressed data from reader.
pub fn decompressor(reader: anytype) Decompressor(@TypeOf(reader)) {
return inflate.decompressor(.zlib, reader);
}
/// Compression level, trades between speed and compression size.
pub const Options = deflate.Options;
/// Compress plain data from reader and write compressed data to the writer.
pub fn compress(reader: anytype, writer: anytype, options: Options) !void {
try deflate.compress(.zlib, reader, writer, options);
}
/// Compressor type
pub fn Compressor(comptime WriterType: type) type {
return deflate.Compressor(.zlib, WriterType);
}
/// Create Compressor which outputs compressed data to the writer.
pub fn compressor(writer: anytype, options: Options) !Compressor(@TypeOf(writer)) {
return try deflate.compressor(.zlib, writer, options);
}
/// Huffman only compression. Without Lempel-Ziv match searching. Faster
/// compression, less memory requirements but bigger compressed sizes.
pub const huffman = struct {
pub fn compress(reader: anytype, writer: anytype) !void {
try deflate.huffman.compress(.zlib, reader, writer);
}
pub fn Compressor(comptime WriterType: type) type {
return deflate.huffman.Compressor(.zlib, WriterType);
}
pub fn compressor(writer: anytype) !huffman.Compressor(@TypeOf(writer)) {
return deflate.huffman.compressor(.zlib, writer);
}
};
// No compression store only. Compressed size is slightly bigger than plain.
pub const store = struct {
pub fn compress(reader: anytype, writer: anytype) !void {
try deflate.store.compress(.zlib, reader, writer);
}
pub fn Compressor(comptime WriterType: type) type {
return deflate.store.Compressor(.zlib, WriterType);
}
pub fn compressor(writer: anytype) !store.Compressor(@TypeOf(writer)) {
return deflate.store.compressor(.zlib, writer);
}
};
test "should not overshoot" {
const std = @import("std");
// Compressed zlib data with extra 4 bytes at the end.
const data = [_]u8{
0x78, 0x9c, 0x73, 0xce, 0x2f, 0xa8, 0x2c, 0xca, 0x4c, 0xcf, 0x28, 0x51, 0x08, 0xcf, 0xcc, 0xc9,
0x49, 0xcd, 0x55, 0x28, 0x4b, 0xcc, 0x53, 0x08, 0x4e, 0xce, 0x48, 0xcc, 0xcc, 0xd6, 0x51, 0x08,
0xce, 0xcc, 0x4b, 0x4f, 0x2c, 0xc8, 0x2f, 0x4a, 0x55, 0x30, 0xb4, 0xb4, 0x34, 0xd5, 0xb5, 0x34,
0x03, 0x00, 0x8b, 0x61, 0x0f, 0xa4, 0x52, 0x5a, 0x94, 0x12,
};
var stream = std.io.fixedBufferStream(data[0..]);
const reader = stream.reader();
var dcp = decompressor(reader);
var out: [128]u8 = undefined;
// Decompress
var n = try dcp.reader().readAll(out[0..]);
// Expected decompressed data
try std.testing.expectEqual(46, n);
try std.testing.expectEqualStrings("Copyright Willem van Schaik, Singapore 1995-96", out[0..n]);
// Decompressor don't overshoot underlying reader.
// It is leaving it at the end of compressed data chunk.
try std.testing.expectEqual(data.len - 4, stream.getPos());
try std.testing.expectEqual(0, dcp.unreadBytes());
// 4 bytes after compressed chunk are available in reader.
n = try reader.readAll(out[0..]);
try std.testing.expectEqual(n, 4);
try std.testing.expectEqualSlices(u8, data[data.len - 4 .. data.len], out[0..n]);
}

View File

@ -2235,18 +2235,14 @@ pub const ElfModule = struct {
const section_bytes = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size);
sections[section_index.?] = if ((shdr.sh_flags & elf.SHF_COMPRESSED) > 0) blk: {
var section_stream = std.io.fixedBufferStream(section_bytes);
const section_reader = section_stream.reader();
const chdr = section_reader.readStruct(elf.Chdr) catch continue;
var section_reader: std.Io.Reader = .fixed(section_bytes);
const chdr = section_reader.takeStruct(elf.Chdr, endian) catch continue;
if (chdr.ch_type != .ZLIB) continue;
var zlib_stream = std.compress.zlib.decompressor(section_reader);
const decompressed_section = try gpa.alloc(u8, chdr.ch_size);
var zlib_stream: std.compress.flate.Decompress = .init(&section_reader, .zlib, &.{});
const decompressed_section = zlib_stream.reader.allocRemaining(gpa, .unlimited) catch continue;
errdefer gpa.free(decompressed_section);
const read = zlib_stream.reader().readAll(decompressed_section) catch continue;
assert(read == decompressed_section.len);
assert(chdr.ch_size == decompressed_section.len);
break :blk .{
.data = decompressed_section,

View File

@ -405,13 +405,8 @@ pub const RequestTransfer = union(enum) {
/// The decompressor for response messages.
pub const Compression = union(enum) {
pub const DeflateDecompressor = std.compress.zlib.Decompressor(Request.TransferReader);
pub const GzipDecompressor = std.compress.gzip.Decompressor(Request.TransferReader);
// https://github.com/ziglang/zig/issues/18937
//pub const ZstdDecompressor = std.compress.zstd.DecompressStream(Request.TransferReader, .{});
deflate: DeflateDecompressor,
gzip: GzipDecompressor,
deflate: std.compress.flate.Decompress,
gzip: std.compress.flate.Decompress,
// https://github.com/ziglang/zig/issues/18937
//zstd: ZstdDecompressor,
none: void,

View File

@ -130,8 +130,8 @@ pub const Request = struct {
pub const DeflateDecompressor = std.compress.zlib.Decompressor(std.io.AnyReader);
pub const GzipDecompressor = std.compress.gzip.Decompressor(std.io.AnyReader);
deflate: DeflateDecompressor,
gzip: GzipDecompressor,
deflate: std.compress.flate.Decompress,
gzip: std.compress.flate.Decompress,
zstd: std.compress.zstd.Decompress,
none: void,
};

View File

@ -5,11 +5,10 @@
const builtin = @import("builtin");
const std = @import("std");
const testing = std.testing;
pub const testutil = @import("zip/test.zig");
const File = testutil.File;
const FileStore = testutil.FileStore;
const File = std.fs.File;
const is_le = builtin.target.cpu.arch.endian() == .little;
const Writer = std.io.Writer;
const Reader = std.io.Reader;
pub const CompressionMethod = enum(u16) {
store = 0,
@ -95,23 +94,37 @@ pub const EndRecord = extern struct {
central_directory_size: u32 align(1),
central_directory_offset: u32 align(1),
comment_len: u16 align(1),
pub fn need_zip64(self: EndRecord) bool {
return isMaxInt(self.record_count_disk) or
isMaxInt(self.record_count_total) or
isMaxInt(self.central_directory_size) or
isMaxInt(self.central_directory_offset);
}
};
/// Find and return the end record for the given seekable zip stream.
/// Note that `seekable_stream` must be an instance of `std.io.SeekableStream` and
/// its context must also have a `.reader()` method that returns an instance of
/// `std.io.GenericReader`.
pub fn findEndRecord(seekable_stream: anytype, stream_len: u64) !EndRecord {
pub const FindBufferError = error{ ZipNoEndRecord, ZipTruncated };
/// TODO audit this logic
pub fn findBuffer(buffer: []const u8) FindBufferError!EndRecord {
const pos = std.mem.lastIndexOf(u8, buffer, &end_record_sig) orelse return error.ZipNoEndRecord;
if (pos + @sizeOf(EndRecord) > buffer.len) return error.EndOfStream;
const record_ptr: *EndRecord = @ptrCast(buffer[pos..][0..@sizeOf(EndRecord)]);
var record = record_ptr.*;
if (!is_le) std.mem.byteSwapAllFields(EndRecord, &record);
return record;
}
pub const FindFileError = File.GetEndPosError || File.SeekError || File.ReadError || error{
ZipNoEndRecord,
EndOfStream,
};
pub fn findFile(fr: *File.Reader) FindFileError!EndRecord {
const end_pos = try fr.getSize();
var buf: [@sizeOf(EndRecord) + std.math.maxInt(u16)]u8 = undefined;
const record_len_max = @min(stream_len, buf.len);
const record_len_max = @min(end_pos, buf.len);
var loaded_len: u32 = 0;
var comment_len: u16 = 0;
while (true) {
const record_len: u32 = @as(u32, comment_len) + @sizeOf(EndRecord);
@ -122,11 +135,13 @@ pub fn findEndRecord(seekable_stream: anytype, stream_len: u64) !EndRecord {
const new_loaded_len = @min(loaded_len + 300, record_len_max);
const read_len = new_loaded_len - loaded_len;
try seekable_stream.seekTo(stream_len - @as(u64, new_loaded_len));
try fr.seekTo(end_pos - @as(u64, new_loaded_len));
const read_buf: []u8 = buf[buf.len - new_loaded_len ..][0..read_len];
const len = try (if (@TypeOf(seekable_stream.context) == std.fs.File) seekable_stream.context.deprecatedReader() else seekable_stream.context.reader()).readAll(read_buf);
if (len != read_len)
return error.ZipTruncated;
var br = fr.interface().unbuffered();
br.readSlice(read_buf) catch |err| switch (err) {
error.ReadFailed => return fr.err.?,
error.EndOfStream => return error.EndOfStream,
};
loaded_len = new_loaded_len;
}
@ -135,9 +150,7 @@ pub fn findEndRecord(seekable_stream: anytype, stream_len: u64) !EndRecord {
std.mem.readInt(u16, record_bytes[20..22], .little) == comment_len)
{
const record: *align(1) EndRecord = @ptrCast(record_bytes.ptr);
if (builtin.target.cpu.arch.endian() != .little) {
std.mem.byteSwapAllFields(@TypeOf(record.*), record);
}
if (!is_le) std.mem.byteSwapAllFields(EndRecord, record);
return record.*;
}
@ -145,52 +158,52 @@ pub fn findEndRecord(seekable_stream: anytype, stream_len: u64) !EndRecord {
return error.ZipNoEndRecord;
comment_len += 1;
}
}
/// Decompresses the given data from `reader` into `writer`. Stops early if more
/// than `uncompressed_size` bytes are processed and verifies that exactly that
/// number of bytes are decompressed. Returns the CRC-32 of the uncompressed data.
/// `writer` can be anything with a `writeAll(self: *Self, chunk: []const u8) anyerror!void` method.
pub fn decompress(
method: CompressionMethod,
uncompressed_size: u64,
reader: anytype,
writer: anytype,
) !u32 {
var hash = std.hash.Crc32.init();
var total_uncompressed: u64 = 0;
switch (method) {
.store => {
var buf: [4096]u8 = undefined;
while (true) {
const len = try reader.read(&buf);
if (len == 0) break;
try writer.writeAll(buf[0..len]);
hash.update(buf[0..len]);
total_uncompressed += @intCast(len);
}
};
pub const Decompress = struct {
interface: Reader,
state: union {
inflate: std.compress.flate.Decompress,
store: *Reader,
},
.deflate => {
var br = std.io.bufferedReader(reader);
var decompressor = std.compress.flate.decompressor(br.reader());
while (try decompressor.next()) |chunk| {
try writer.writeAll(chunk);
hash.update(chunk);
total_uncompressed += @intCast(chunk.len);
if (total_uncompressed > uncompressed_size)
return error.ZipUncompressSizeTooSmall;
}
if (br.end != br.start)
return error.ZipDeflateTruncated;
},
_ => return error.UnsupportedCompressionMethod,
}
if (total_uncompressed != uncompressed_size)
return error.ZipUncompressSizeMismatch;
return hash.final();
}
pub fn init(reader: *Reader, method: CompressionMethod, buffer: []u8) Reader {
return switch (method) {
.store => .{
.state = .{ .store = reader },
.interface = .{
.context = undefined,
.vtable = &.{ .stream = streamStore },
.buffer = buffer,
.end = 0,
.seek = 0,
},
},
.deflate => .{
.state = .{ .inflate = .init(reader, .raw) },
.interface = .{
.context = undefined,
.vtable = &.{ .stream = streamDeflate },
.buffer = buffer,
.end = 0,
.seek = 0,
},
},
else => unreachable,
};
}
fn streamStore(r: *Reader, w: *Writer, limit: std.io.Limit) Reader.StreamError!usize {
const d: *Decompress = @fieldParentPtr("interface", r);
return d.store.read(w, limit);
}
fn streamDeflate(r: *Reader, w: *Writer, limit: std.io.Limit) Reader.StreamError!usize {
const d: *Decompress = @fieldParentPtr("interface", r);
return std.compress.flate.Decompress.read(&d.inflate, w, limit);
}
};
fn isBadFilename(filename: []const u8) bool {
if (filename.len == 0 or filename[0] == '/')
@ -253,9 +266,8 @@ fn readZip64FileExtents(comptime T: type, header: T, extents: *FileExtents, data
}
}
pub fn Iterator(comptime SeekableStream: type) type {
return struct {
stream: SeekableStream,
pub const Iterator = struct {
input: *File.Reader,
cd_record_count: u64,
cd_zip_offset: u64,
@ -264,12 +276,8 @@ pub fn Iterator(comptime SeekableStream: type) type {
cd_record_index: u64 = 0,
cd_record_offset: u64 = 0,
const Self = @This();
pub fn init(stream: SeekableStream) !Self {
const stream_len = try stream.getEndPos();
const end_record = try findEndRecord(stream, stream_len);
pub fn init(input: *File.Reader) !Iterator {
const end_record = try EndRecord.findFile(input);
if (!isMaxInt(end_record.record_count_disk) and end_record.record_count_disk > end_record.record_count_total)
return error.ZipDiskRecordCountTooLarge;
@ -283,8 +291,8 @@ pub fn Iterator(comptime SeekableStream: type) type {
return error.ZipMultiDiskUnsupported;
}
var result = Self{
.stream = stream,
var result: Iterator = .{
.input = input,
.cd_record_count = end_record.record_count_total,
.cd_zip_offset = end_record.central_directory_offset,
.cd_size = end_record.central_directory_size,
@ -292,10 +300,15 @@ pub fn Iterator(comptime SeekableStream: type) type {
if (!end_record.need_zip64()) return result;
const locator_end_offset: u64 = @as(u64, end_record.comment_len) + @sizeOf(EndRecord) + @sizeOf(EndLocator64);
const stream_len = try input.getSize();
if (locator_end_offset > stream_len)
return error.ZipTruncated;
try stream.seekTo(stream_len - locator_end_offset);
const locator = try (if (@TypeOf(stream.context) == std.fs.File) stream.context.deprecatedReader() else stream.context.reader()).readStructEndian(EndLocator64, .little);
try input.seekTo(stream_len - locator_end_offset);
const locator = input.interface.takeStructEndian(EndLocator64, .little) catch |err| switch (err) {
error.ReadFailed => return input.err.?,
error.EndOfStream => return error.EndOfStream,
};
if (!std.mem.eql(u8, &locator.signature, &end_locator64_sig))
return error.ZipBadLocatorSig;
if (locator.zip64_disk_count != 0)
@ -303,9 +316,12 @@ pub fn Iterator(comptime SeekableStream: type) type {
if (locator.total_disk_count != 1)
return error.ZipMultiDiskUnsupported;
try stream.seekTo(locator.record_file_offset);
try input.seekTo(locator.record_file_offset);
const record64 = try (if (@TypeOf(stream.context) == std.fs.File) stream.context.deprecatedReader() else stream.context.reader()).readStructEndian(EndRecord64, .little);
const record64 = input.interface.takeStructEndian(EndRecord64, .little) catch |err| switch (err) {
error.ReadFailed => return input.err.?,
error.EndOfStream => return error.EndOfStream,
};
if (!std.mem.eql(u8, &record64.signature, &end_record64_sig))
return error.ZipBadEndRecord64Sig;
@ -344,7 +360,7 @@ pub fn Iterator(comptime SeekableStream: type) type {
return result;
}
pub fn next(self: *Self) !?Entry {
pub fn next(self: *Iterator) !?Entry {
if (self.cd_record_index == self.cd_record_count) {
if (self.cd_record_offset != self.cd_size)
return if (self.cd_size > self.cd_record_offset)
@ -356,8 +372,12 @@ pub fn Iterator(comptime SeekableStream: type) type {
}
const header_zip_offset = self.cd_zip_offset + self.cd_record_offset;
try self.stream.seekTo(header_zip_offset);
const header = try (if (@TypeOf(self.stream.context) == std.fs.File) self.stream.context.deprecatedReader() else self.stream.context.reader()).readStructEndian(CentralDirectoryFileHeader, .little);
const input = self.input;
try input.seekTo(header_zip_offset);
const header = input.interface.takeStructEndian(CentralDirectoryFileHeader, .little) catch |err| switch (err) {
error.ReadFailed => return input.err.?,
error.EndOfStream => return error.EndOfStream,
};
if (!std.mem.eql(u8, &header.signature, &central_file_header_sig))
return error.ZipBadCdOffset;
@ -384,12 +404,11 @@ pub fn Iterator(comptime SeekableStream: type) type {
var extra_buf: [std.math.maxInt(u16)]u8 = undefined;
const extra = extra_buf[0..header.extra_len];
{
try self.stream.seekTo(header_zip_offset + @sizeOf(CentralDirectoryFileHeader) + header.filename_len);
const len = try (if (@TypeOf(self.stream.context) == std.fs.File) self.stream.context.deprecatedReader() else self.stream.context.reader()).readAll(extra);
if (len != extra.len)
return error.ZipTruncated;
}
try input.seekTo(header_zip_offset + @sizeOf(CentralDirectoryFileHeader) + header.filename_len);
input.interface.readSlice(extra) catch |err| switch (err) {
error.ReadFailed => return input.err.?,
error.EndOfStream => return error.EndOfStream,
};
var extra_offset: usize = 0;
while (extra_offset + 4 <= extra.len) {
@ -437,27 +456,27 @@ pub fn Iterator(comptime SeekableStream: type) type {
pub fn extract(
self: Entry,
stream: SeekableStream,
stream: *File.Reader,
options: ExtractOptions,
filename_buf: []u8,
dest: std.fs.Dir,
) !u32 {
if (filename_buf.len < self.filename_len)
return error.ZipInsufficientBuffer;
switch (self.compression_method) {
.store, .deflate => {},
else => return error.UnsupportedCompressionMethod,
}
const filename = filename_buf[0..self.filename_len];
try stream.seekTo(self.header_zip_offset + @sizeOf(CentralDirectoryFileHeader));
{
const len = try (if (@TypeOf(stream.context) == std.fs.File) stream.context.deprecatedReader() else stream.context.reader()).readAll(filename);
if (len != filename.len)
return error.ZipBadFileOffset;
try stream.seekTo(self.header_zip_offset + @sizeOf(CentralDirectoryFileHeader));
try stream.interface.readSlice(filename);
}
const local_data_header_offset: u64 = local_data_header_offset: {
const local_header = blk: {
try stream.seekTo(self.file_offset);
break :blk try (if (@TypeOf(stream.context) == std.fs.File) stream.context.deprecatedReader() else stream.context.reader()).readStructEndian(LocalFileHeader, .little);
break :blk try stream.interface.takeStructEndian(LocalFileHeader, .little);
};
if (!std.mem.eql(u8, &local_header.signature, &local_file_header_sig))
return error.ZipBadFileOffset;
@ -483,9 +502,7 @@ pub fn Iterator(comptime SeekableStream: type) type {
{
try stream.seekTo(self.file_offset + @sizeOf(LocalFileHeader) + local_header.filename_len);
const len = try (if (@TypeOf(stream.context) == std.fs.File) stream.context.deprecatedReader() else stream.context.reader()).readAll(extra);
if (len != extra.len)
return error.ZipTruncated;
try stream.interface.readSlice(extra);
}
var extra_offset: usize = 0;
@ -547,25 +564,34 @@ pub fn Iterator(comptime SeekableStream: type) type {
break :blk try dest.createFile(filename, .{ .exclusive = true });
};
defer out_file.close();
var file_writer = out_file.writer();
var file_bw = file_writer.writer(&.{});
const local_data_file_offset: u64 =
@as(u64, self.file_offset) +
@as(u64, @sizeOf(LocalFileHeader)) +
local_data_header_offset;
try stream.seekTo(local_data_file_offset);
var limited_reader = std.io.limitedReader((if (@TypeOf(stream.context) == std.fs.File) stream.context.deprecatedReader() else stream.context.reader()), self.compressed_size);
const crc = try decompress(
self.compression_method,
self.uncompressed_size,
limited_reader.reader(),
out_file.deprecatedWriter(),
);
if (limited_reader.bytes_left != 0)
return error.ZipDecompressTruncated;
return crc;
var limited_file_reader = stream.interface.limited(.limited(self.compressed_size));
var file_read_buffer: [1000]u8 = undefined;
var decompress_read_buffer: [1000]u8 = undefined;
var limited_br = limited_file_reader.reader().buffered(&file_read_buffer);
var decompress: Decompress = undefined;
var decompress_br = decompress.readable(&limited_br, self.compression_method, &decompress_read_buffer);
const start_out = file_bw.count;
var hash_writer = file_bw.hashed(std.hash.Crc32.init());
var hash_bw = hash_writer.writer(&.{});
decompress_br.readAll(&hash_bw, .limited(self.uncompressed_size)) catch |err| switch (err) {
error.ReadFailed => return stream.err.?,
error.WriteFailed => return file_writer.err.?,
error.EndOfStream => return error.ZipDecompressTruncated,
};
if (limited_file_reader.remaining.nonzero()) return error.ZipDecompressTruncated;
const written = file_bw.count - start_out;
if (written != self.uncompressed_size) return error.ZipUncompressSizeMismatch;
return hash_writer.hasher.final();
}
};
};
}
};
// returns true if `filename` starts with `root` followed by a forward slash
fn filenameInRoot(filename: []const u8, root: []const u8) bool {
@ -614,17 +640,13 @@ pub const ExtractOptions = struct {
diagnostics: ?*Diagnostics = null,
};
/// Extract the zipped files inside `seekable_stream` to the given `dest` directory.
/// Note that `seekable_stream` must be an instance of `std.io.SeekableStream` and
/// its context must also have a `.reader()` method that returns an instance of
/// `std.io.GenericReader`.
pub fn extract(dest: std.fs.Dir, seekable_stream: anytype, options: ExtractOptions) !void {
const SeekableStream = @TypeOf(seekable_stream);
var iter = try Iterator(SeekableStream).init(seekable_stream);
/// Extract the zipped files to the given `dest` directory.
pub fn extract(dest: std.fs.Dir, fr: *File.Reader, options: ExtractOptions) !void {
var iter = try Iterator.init(fr);
var filename_buf: [std.fs.max_path_bytes]u8 = undefined;
while (try iter.next()) |entry| {
const crc32 = try entry.extract(seekable_stream, options, &filename_buf, dest);
const crc32 = try entry.extract(fr, options, &filename_buf, dest);
if (crc32 != entry.crc32)
return error.ZipCrcMismatch;
if (options.diagnostics) |d| {
@ -633,173 +655,6 @@ pub fn extract(dest: std.fs.Dir, seekable_stream: anytype, options: ExtractOptio
}
}
fn testZip(options: ExtractOptions, comptime files: []const File, write_opt: testutil.WriteZipOptions) !void {
var store: [files.len]FileStore = undefined;
try testZipWithStore(options, files, write_opt, &store);
}
fn testZipWithStore(
options: ExtractOptions,
test_files: []const File,
write_opt: testutil.WriteZipOptions,
store: []FileStore,
) !void {
var zip_buf: [4096]u8 = undefined;
var fbs = try testutil.makeZipWithStore(&zip_buf, test_files, write_opt, store);
var tmp = testing.tmpDir(.{ .no_follow = true });
defer tmp.cleanup();
try extract(tmp.dir, fbs.seekableStream(), options);
try testutil.expectFiles(test_files, tmp.dir, .{});
}
fn testZipError(expected_error: anyerror, file: File, options: ExtractOptions) !void {
var zip_buf: [4096]u8 = undefined;
var store: [1]FileStore = undefined;
var fbs = try testutil.makeZipWithStore(&zip_buf, &[_]File{file}, .{}, &store);
var tmp = testing.tmpDir(.{ .no_follow = true });
defer tmp.cleanup();
try testing.expectError(expected_error, extract(tmp.dir, fbs.seekableStream(), options));
}
test "zip one file" {
try testZip(.{}, &[_]File{
.{ .name = "onefile.txt", .content = "Just a single file\n", .compression = .store },
}, .{});
}
test "zip multiple files" {
try testZip(.{ .allow_backslashes = true }, &[_]File{
.{ .name = "foo", .content = "a foo file\n", .compression = .store },
.{ .name = "subdir/bar", .content = "bar is this right?\nanother newline\n", .compression = .store },
.{ .name = "subdir\\whoa", .content = "you can do backslashes", .compression = .store },
.{ .name = "subdir/another/baz", .content = "bazzy mc bazzerson", .compression = .store },
}, .{});
}
test "zip deflated" {
try testZip(.{}, &[_]File{
.{ .name = "deflateme", .content = "This is a deflated file.\nIt should be smaller in the Zip file1\n", .compression = .deflate },
// TODO: re-enable this if/when we add support for deflate64
//.{ .name = "deflateme64", .content = "The 64k version of deflate!\n", .compression = .deflate64 },
.{ .name = "raw", .content = "Not all files need to be deflated in the same Zip.\n", .compression = .store },
}, .{});
}
test "zip verify filenames" {
// no empty filenames
try testZipError(error.ZipBadFilename, .{ .name = "", .content = "", .compression = .store }, .{});
// no absolute paths
try testZipError(error.ZipBadFilename, .{ .name = "/", .content = "", .compression = .store }, .{});
try testZipError(error.ZipBadFilename, .{ .name = "/foo", .content = "", .compression = .store }, .{});
try testZipError(error.ZipBadFilename, .{ .name = "/foo/bar", .content = "", .compression = .store }, .{});
// no '..' components
try testZipError(error.ZipBadFilename, .{ .name = "..", .content = "", .compression = .store }, .{});
try testZipError(error.ZipBadFilename, .{ .name = "foo/..", .content = "", .compression = .store }, .{});
try testZipError(error.ZipBadFilename, .{ .name = "foo/bar/..", .content = "", .compression = .store }, .{});
try testZipError(error.ZipBadFilename, .{ .name = "foo/bar/../", .content = "", .compression = .store }, .{});
// no backslashes
try testZipError(error.ZipFilenameHasBackslash, .{ .name = "foo\\bar", .content = "", .compression = .store }, .{});
}
test "zip64" {
const test_files = [_]File{
.{ .name = "fram", .content = "fram foo fro fraba", .compression = .store },
.{ .name = "subdir/barro", .content = "aljdk;jal;jfd;lajkf", .compression = .store },
};
try testZip(.{}, &test_files, .{
.end = .{
.zip64 = .{},
.record_count_disk = std.math.maxInt(u16), // trigger zip64
},
});
try testZip(.{}, &test_files, .{
.end = .{
.zip64 = .{},
.record_count_total = std.math.maxInt(u16), // trigger zip64
},
});
try testZip(.{}, &test_files, .{
.end = .{
.zip64 = .{},
.record_count_disk = std.math.maxInt(u16), // trigger zip64
.record_count_total = std.math.maxInt(u16), // trigger zip64
},
});
try testZip(.{}, &test_files, .{
.end = .{
.zip64 = .{},
.central_directory_size = std.math.maxInt(u32), // trigger zip64
},
});
try testZip(.{}, &test_files, .{
.end = .{
.zip64 = .{},
.central_directory_offset = std.math.maxInt(u32), // trigger zip64
},
});
try testZip(.{}, &test_files, .{
.end = .{
.zip64 = .{},
.central_directory_offset = std.math.maxInt(u32), // trigger zip64
},
.local_header = .{
.zip64 = .{ // trigger local header zip64
.data_size = 16,
},
.compressed_size = std.math.maxInt(u32),
.uncompressed_size = std.math.maxInt(u32),
.extra_len = 20,
},
});
}
test "bad zip files" {
var tmp = testing.tmpDir(.{ .no_follow = true });
defer tmp.cleanup();
var zip_buf: [4096]u8 = undefined;
const file_a = [_]File{.{ .name = "a", .content = "", .compression = .store }};
{
var fbs = try testutil.makeZip(&zip_buf, &.{}, .{ .end = .{ .sig = [_]u8{ 1, 2, 3, 4 } } });
try testing.expectError(error.ZipNoEndRecord, extract(tmp.dir, fbs.seekableStream(), .{}));
}
{
var fbs = try testutil.makeZip(&zip_buf, &.{}, .{ .end = .{ .comment_len = 1 } });
try testing.expectError(error.ZipNoEndRecord, extract(tmp.dir, fbs.seekableStream(), .{}));
}
{
var fbs = try testutil.makeZip(&zip_buf, &.{}, .{ .end = .{ .comment = "a", .comment_len = 0 } });
try testing.expectError(error.ZipNoEndRecord, extract(tmp.dir, fbs.seekableStream(), .{}));
}
{
var fbs = try testutil.makeZip(&zip_buf, &.{}, .{ .end = .{ .disk_number = 1 } });
try testing.expectError(error.ZipMultiDiskUnsupported, extract(tmp.dir, fbs.seekableStream(), .{}));
}
{
var fbs = try testutil.makeZip(&zip_buf, &.{}, .{ .end = .{ .central_directory_disk_number = 1 } });
try testing.expectError(error.ZipMultiDiskUnsupported, extract(tmp.dir, fbs.seekableStream(), .{}));
}
{
var fbs = try testutil.makeZip(&zip_buf, &.{}, .{ .end = .{ .record_count_disk = 1 } });
try testing.expectError(error.ZipDiskRecordCountTooLarge, extract(tmp.dir, fbs.seekableStream(), .{}));
}
{
var fbs = try testutil.makeZip(&zip_buf, &.{}, .{ .end = .{ .central_directory_size = 1 } });
try testing.expectError(error.ZipCdOversized, extract(tmp.dir, fbs.seekableStream(), .{}));
}
{
var fbs = try testutil.makeZip(&zip_buf, &file_a, .{ .end = .{ .central_directory_size = 0 } });
try testing.expectError(error.ZipCdUndersized, extract(tmp.dir, fbs.seekableStream(), .{}));
}
{
var fbs = try testutil.makeZip(&zip_buf, &file_a, .{ .end = .{ .central_directory_offset = 0 } });
try testing.expectError(error.ZipBadCdOffset, extract(tmp.dir, fbs.seekableStream(), .{}));
}
{
var fbs = try testutil.makeZip(&zip_buf, &file_a, .{
.end = .{
.zip64 = .{ .locator_sig = [_]u8{ 1, 2, 3, 4 } },
.central_directory_size = std.math.maxInt(u32), // trigger 64
},
});
try testing.expectError(error.ZipBadLocatorSig, extract(tmp.dir, fbs.seekableStream(), .{}));
}
test {
_ = @import("zip/test.zig");
}