stage2 ARM: move add and sub to new binOp lowering mechanism

This commit is contained in:
joachimschmidt557 2022-02-16 23:17:48 +01:00
parent 23915c2c44
commit 67e3346633
No known key found for this signature in database
GPG Key ID: E0B575BE2884ACC5

View File

@ -502,10 +502,10 @@ fn genBody(self: *Self, body: []const Air.Inst.Index) InnerError!void {
switch (air_tags[inst]) {
// zig fmt: off
.add, .ptr_add => try self.airAdd(inst),
.add, .ptr_add => try self.airBinOp(inst),
.addwrap => try self.airAddWrap(inst),
.add_sat => try self.airAddSat(inst),
.sub, .ptr_sub => try self.airSub(inst),
.sub, .ptr_sub => try self.airBinOp(inst),
.subwrap => try self.airSubWrap(inst),
.sub_sat => try self.airSubSat(inst),
.mul => try self.airMul(inst),
@ -943,9 +943,15 @@ fn airSlice(self: *Self, inst: Air.Inst.Index) !void {
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airAdd(self: *Self, inst: Air.Inst.Index) !void {
fn airBinOp(self: *Self, inst: Air.Inst.Index) !void {
const tag = self.air.instructions.items(.tag)[inst];
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else try self.genBinOp(inst, bin_op.lhs, bin_op.rhs, .add);
const lhs = try self.resolveInst(bin_op.lhs);
const rhs = try self.resolveInst(bin_op.rhs);
const lhs_ty = self.air.typeOf(bin_op.lhs);
const rhs_ty = self.air.typeOf(bin_op.rhs);
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else try self.binOp(tag, inst, lhs, rhs, lhs_ty, rhs_ty);
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
@ -961,12 +967,6 @@ fn airAddSat(self: *Self, inst: Air.Inst.Index) !void {
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airSub(self: *Self, inst: Air.Inst.Index) !void {
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else try self.genBinOp(inst, bin_op.lhs, bin_op.rhs, .sub);
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airSubWrap(self: *Self, inst: Air.Inst.Index) !void {
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement subwrap for {}", .{self.target.cpu.arch});
@ -1311,18 +1311,14 @@ fn airSliceElemVal(self: *Self, inst: Air.Inst.Index) !void {
assert(offset_mcv == .register); // result of multiplication should always be register
self.register_manager.freezeRegs(&.{offset_mcv.register});
const addr_reg = try self.register_manager.allocReg(null);
self.register_manager.freezeRegs(&.{addr_reg});
defer self.register_manager.unfreezeRegs(&.{addr_reg});
try self.genBinOpCode(addr_reg, base_mcv, offset_mcv, false, .add, .unsigned);
const addr_mcv = try self.binOp(.add, null, base_mcv, offset_mcv, Type.usize, Type.usize);
// At this point in time, neither the base register
// nor the offset register contains any valuable data
// anymore.
self.register_manager.unfreezeRegs(&.{ base_mcv.register, offset_mcv.register });
try self.load(dst_mcv, .{ .register = addr_reg }, slice_ptr_field_type);
try self.load(dst_mcv, addr_mcv, slice_ptr_field_type);
break :result dst_mcv;
},
@ -1652,16 +1648,16 @@ fn structFieldPtr(self: *Self, inst: Air.Inst.Index, operand: Air.Inst.Ref, inde
self.register_manager.freezeRegs(&.{addr_reg});
defer self.register_manager.unfreezeRegs(&.{addr_reg});
const dst_reg = try self.register_manager.allocReg(inst);
try self.genBinOpCode(
dst_reg,
const dest = try self.binOp(
.add,
null,
.{ .register = addr_reg },
.{ .register = offset_reg },
false,
.add,
.unsigned,
Type.usize,
Type.usize,
);
break :result MCValue{ .register = dst_reg };
break :result dest;
},
}
};
@ -1699,6 +1695,273 @@ fn airStructFieldVal(self: *Self, inst: Air.Inst.Index) !void {
return self.finishAir(inst, result, .{ extra.struct_operand, .none, .none });
}
/// Don't call this function directly. Use binOp instead.
///
/// Calling this function signals an intention to generate a Mir
/// instruction of the form
///
/// op dest, lhs, rhs
///
/// Asserts that generating an instruction of that form is possible.
fn binOpRegister(
self: *Self,
tag: Air.Inst.Tag,
maybe_inst: ?Air.Inst.Index,
lhs: MCValue,
rhs: MCValue,
lhs_ty: Type,
rhs_ty: Type,
) !MCValue {
const lhs_is_register = lhs == .register;
const rhs_is_register = rhs == .register;
if (lhs_is_register) self.register_manager.freezeRegs(&.{lhs.register});
if (rhs_is_register) self.register_manager.freezeRegs(&.{rhs.register});
const branch = &self.branch_stack.items[self.branch_stack.items.len - 1];
const lhs_reg = if (lhs_is_register) lhs.register else blk: {
const track_inst: ?Air.Inst.Index = if (maybe_inst) |inst| inst: {
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
break :inst Air.refToIndex(bin_op.lhs).?;
} else null;
const reg = try self.register_manager.allocReg(track_inst);
self.register_manager.freezeRegs(&.{reg});
if (track_inst) |inst| branch.inst_table.putAssumeCapacity(inst, .{ .register = reg });
break :blk reg;
};
defer self.register_manager.unfreezeRegs(&.{lhs_reg});
const rhs_reg = if (rhs_is_register) rhs.register else blk: {
const track_inst: ?Air.Inst.Index = if (maybe_inst) |inst| inst: {
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
break :inst Air.refToIndex(bin_op.rhs).?;
} else null;
const reg = try self.register_manager.allocReg(track_inst);
self.register_manager.freezeRegs(&.{reg});
if (track_inst) |inst| branch.inst_table.putAssumeCapacity(inst, .{ .register = reg });
break :blk reg;
};
defer self.register_manager.unfreezeRegs(&.{rhs_reg});
const dest_reg = if (maybe_inst) |inst| blk: {
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
if (lhs_is_register and self.reuseOperand(inst, bin_op.lhs, 0, lhs)) {
break :blk lhs_reg;
} else if (rhs_is_register and self.reuseOperand(inst, bin_op.rhs, 1, rhs)) {
break :blk rhs_reg;
} else {
break :blk try self.register_manager.allocReg(inst);
}
} else try self.register_manager.allocReg(null);
if (!lhs_is_register) try self.genSetReg(lhs_ty, lhs_reg, lhs);
if (!rhs_is_register) try self.genSetReg(rhs_ty, rhs_reg, rhs);
const mir_tag: Mir.Inst.Tag = switch (tag) {
.add, .ptr_add => .add,
.sub, .ptr_sub => .sub,
else => unreachable,
};
const mir_data: Mir.Inst.Data = switch (tag) {
.add,
.sub,
.ptr_add,
.ptr_sub,
=> .{ .rr_op = .{
.rd = dest_reg,
.rn = lhs_reg,
.op = Instruction.Operand.reg(rhs_reg, Instruction.Operand.Shift.none),
} },
else => unreachable,
};
_ = try self.addInst(.{
.tag = mir_tag,
.data = mir_data,
});
return MCValue{ .register = dest_reg };
}
/// Don't call this function directly. Use binOp instead.
///
/// Calling this function signals an intention to generate a Mir
/// instruction of the form
///
/// op dest, lhs, #rhs_imm
///
/// Set lhs_and_rhs_swapped to true iff inst.bin_op.lhs corresponds to
/// rhs and vice versa. This parameter is only used when maybe_inst !=
/// null.
///
/// Asserts that generating an instruction of that form is possible.
fn binOpImmediate(
self: *Self,
tag: Air.Inst.Tag,
maybe_inst: ?Air.Inst.Index,
lhs: MCValue,
rhs: MCValue,
lhs_ty: Type,
lhs_and_rhs_swapped: bool,
) !MCValue {
const lhs_is_register = lhs == .register;
if (lhs_is_register) self.register_manager.freezeRegs(&.{lhs.register});
const branch = &self.branch_stack.items[self.branch_stack.items.len - 1];
const lhs_reg = if (lhs_is_register) lhs.register else blk: {
const track_inst: ?Air.Inst.Index = if (maybe_inst) |inst| inst: {
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
break :inst Air.refToIndex(
if (lhs_and_rhs_swapped) bin_op.rhs else bin_op.lhs,
).?;
} else null;
const reg = try self.register_manager.allocReg(track_inst);
self.register_manager.freezeRegs(&.{reg});
if (track_inst) |inst| branch.inst_table.putAssumeCapacity(inst, .{ .register = reg });
break :blk reg;
};
defer self.register_manager.unfreezeRegs(&.{lhs_reg});
const dest_reg = if (maybe_inst) |inst| blk: {
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
if (lhs_is_register and self.reuseOperand(
inst,
if (lhs_and_rhs_swapped) bin_op.rhs else bin_op.lhs,
if (lhs_and_rhs_swapped) 1 else 0,
lhs,
)) {
break :blk lhs_reg;
} else {
break :blk try self.register_manager.allocReg(inst);
}
} else try self.register_manager.allocReg(null);
if (!lhs_is_register) try self.genSetReg(lhs_ty, lhs_reg, lhs);
const mir_tag: Mir.Inst.Tag = switch (tag) {
.add => .add,
.sub => .sub,
else => unreachable,
};
const mir_data: Mir.Inst.Data = switch (tag) {
.add,
.sub,
=> .{ .rr_op = .{
.rd = dest_reg,
.rn = lhs_reg,
.op = Instruction.Operand.fromU32(rhs.immediate).?,
} },
else => unreachable,
};
_ = try self.addInst(.{
.tag = mir_tag,
.data = mir_data,
});
return MCValue{ .register = dest_reg };
}
/// For all your binary operation needs, this function will generate
/// the corresponding Mir instruction(s). Returns the location of the
/// result.
///
/// If the binary operation itself happens to be an Air instruction,
/// pass the corresponding index in the inst parameter. That helps
/// this function do stuff like reusing operands.
///
/// This function does not do any lowering to Mir itself, but instead
/// looks at the lhs and rhs and determines which kind of lowering
/// would be best suitable and then delegates the lowering to other
/// functions.
fn binOp(
self: *Self,
tag: Air.Inst.Tag,
maybe_inst: ?Air.Inst.Index,
lhs: MCValue,
rhs: MCValue,
lhs_ty: Type,
rhs_ty: Type,
) !MCValue {
switch (tag) {
.add,
.sub,
=> {
switch (lhs_ty.zigTypeTag()) {
.Float => return self.fail("TODO ARM binary operations on floats", .{}),
.Vector => return self.fail("TODO ARM binary operations on vectors", .{}),
.Int => {
assert(lhs_ty.eql(rhs_ty));
const int_info = lhs_ty.intInfo(self.target.*);
if (int_info.bits <= 32) {
// Only say yes if the operation is
// commutative, i.e. we can swap both of the
// operands
const lhs_immediate_ok = switch (tag) {
.add => lhs == .immediate and Instruction.Operand.fromU32(lhs.immediate) != null,
.sub => false,
else => unreachable,
};
const rhs_immediate_ok = switch (tag) {
.add,
.sub,
=> rhs == .immediate and Instruction.Operand.fromU32(rhs.immediate) != null,
else => unreachable,
};
if (rhs_immediate_ok) {
return try self.binOpImmediate(tag, maybe_inst, lhs, rhs, lhs_ty, false);
} else if (lhs_immediate_ok) {
// swap lhs and rhs
return try self.binOpImmediate(tag, maybe_inst, rhs, lhs, rhs_ty, true);
} else {
return try self.binOpRegister(tag, maybe_inst, lhs, rhs, lhs_ty, rhs_ty);
}
} else {
return self.fail("TODO ARM binary operations on integers > u32/i32", .{});
}
},
else => unreachable,
}
},
.ptr_add,
.ptr_sub,
=> {
switch (lhs_ty.zigTypeTag()) {
.Pointer => {
const ptr_ty = lhs_ty;
const pointee_ty = switch (ptr_ty.ptrSize()) {
.One => ptr_ty.childType().childType(), // ptr to array, so get array element type
else => ptr_ty.childType(),
};
if (pointee_ty.abiSize(self.target.*) > 1) {
return self.fail("TODO ptr_add, ptr_sub with more element sizes", .{});
}
return try self.binOpRegister(tag, maybe_inst, lhs, rhs, lhs_ty, rhs_ty);
},
else => unreachable,
}
},
else => unreachable,
}
}
fn armOperandShouldBeRegister(self: *Self, mcv: MCValue) !bool {
return switch (mcv) {
.none => unreachable,
@ -1730,8 +1993,6 @@ fn genBinOp(self: *Self, inst: Air.Inst.Index, op_lhs: Air.Inst.Ref, op_rhs: Air
const ty = self.air.typeOf(op_lhs);
switch (ty.zigTypeTag()) {
.Float => return self.fail("TODO ARM binary operations on floats", .{}),
.Vector => return self.fail("TODO ARM binary operations on vectors", .{}),
.Bool => {
return self.genBinIntOp(inst, op_lhs, op_rhs, op, 1, .unsigned);
},
@ -1896,7 +2157,6 @@ fn genBinOpCode(
};
switch (op) {
.add,
.bool_and,
.bit_and,
.bool_or,
@ -1905,7 +2165,6 @@ fn genBinOpCode(
.xor,
=> {
const tag: Mir.Inst.Tag = switch (op) {
.add => .add,
.bool_and, .bit_and => .@"and",
.bool_or, .bit_or => .orr,
.not, .xor => .eor,
@ -1921,18 +2180,6 @@ fn genBinOpCode(
} },
});
},
.sub => {
const tag: Mir.Inst.Tag = if (swap_lhs_and_rhs) .rsb else .sub;
_ = try self.addInst(.{
.tag = tag,
.data = .{ .rr_op = .{
.rd = dst_reg,
.rn = op1,
.op = operand,
} },
});
},
.cmp_eq => {
_ = try self.addInst(.{
.tag = .cmp,