Merge pull request #8852 from Snektron/spirv

SPIR-V: More codegen
This commit is contained in:
Andrew Kelley 2021-05-22 18:20:20 -04:00 committed by GitHub
commit 63aabbbba7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 589 additions and 188 deletions

View File

@ -14,63 +14,180 @@ const LazySrcLoc = Module.LazySrcLoc;
const ir = @import("../air.zig");
const Inst = ir.Inst;
pub const TypeMap = std.HashMap(Type, u32, Type.hash, Type.eql, std.hash_map.default_max_load_percentage);
pub const ValueMap = std.AutoHashMap(*Inst, u32);
pub const Word = u32;
pub const ResultId = u32;
pub fn writeOpcode(code: *std.ArrayList(u32), opcode: Opcode, arg_count: u32) !void {
const word_count = arg_count + 1;
pub const TypeMap = std.HashMap(Type, ResultId, Type.hash, Type.eql, std.hash_map.default_max_load_percentage);
pub const InstMap = std.AutoHashMap(*Inst, ResultId);
const IncomingBlock = struct {
src_label_id: ResultId,
break_value_id: ResultId,
};
pub const BlockMap = std.AutoHashMap(*Inst.Block, struct {
label_id: ResultId,
incoming_blocks: *std.ArrayListUnmanaged(IncomingBlock),
});
pub fn writeOpcode(code: *std.ArrayList(Word), opcode: Opcode, arg_count: u16) !void {
const word_count: Word = arg_count + 1;
try code.append((word_count << 16) | @enumToInt(opcode));
}
pub fn writeInstruction(code: *std.ArrayList(u32), opcode: Opcode, args: []const u32) !void {
try writeOpcode(code, opcode, @intCast(u32, args.len));
pub fn writeInstruction(code: *std.ArrayList(Word), opcode: Opcode, args: []const Word) !void {
try writeOpcode(code, opcode, @intCast(u16, args.len));
try code.appendSlice(args);
}
/// This structure represents a SPIR-V binary module being compiled, and keeps track of relevant information
/// such as code for the different logical sections, and the next result-id.
pub const SPIRVModule = struct {
next_result_id: u32,
types_globals_constants: std.ArrayList(u32),
fn_decls: std.ArrayList(u32),
pub fn writeInstructionWithString(code: *std.ArrayList(Word), opcode: Opcode, args: []const Word, str: []const u8) !void {
// Str needs to be written zero-terminated, so we need to add one to the length.
const zero_terminated_len = str.len + 1;
const str_words = (zero_terminated_len + @sizeOf(Word) - 1) / @sizeOf(Word);
pub fn init(allocator: *Allocator) SPIRVModule {
try writeOpcode(code, opcode, @intCast(u16, args.len + str_words));
try code.ensureUnusedCapacity(args.len + str_words);
code.appendSliceAssumeCapacity(args);
// TODO: Not actually sure whether this is correct for big-endian.
// See https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#Literal
var i: usize = 0;
while (i < zero_terminated_len) : (i += @sizeOf(Word)) {
var word: Word = 0;
var j: usize = 0;
while (j < @sizeOf(Word) and i + j < str.len) : (j += 1) {
word |= @as(Word, str[i + j]) << @intCast(std.math.Log2Int(Word), j * std.meta.bitCount(u8));
}
code.appendAssumeCapacity(word);
}
}
/// This structure represents a SPIR-V (binary) module being compiled, and keeps track of all relevant information.
/// That includes the actual instructions, the current result-id bound, and data structures for querying result-id's
/// of data which needs to be persistent over different calls to Decl code generation.
pub const SPIRVModule = struct {
/// A general-purpose allocator which may be used to allocate temporary resources required for compilation.
gpa: *Allocator,
/// The parent module.
module: *Module,
/// SPIR-V instructions return result-ids. This variable holds the module-wide counter for these.
next_result_id: ResultId,
/// Code of the actual SPIR-V binary, divided into the relevant logical sections.
/// Note: To save some bytes, these could also be unmanaged, but since there is only one instance of SPIRVModule
/// and this removes some clutter in the rest of the backend, it's fine like this.
binary: struct {
/// OpCapability and OpExtension instructions (in that order).
capabilities_and_extensions: std.ArrayList(Word),
/// OpString, OpSourceExtension, OpSource, OpSourceContinued.
debug_strings: std.ArrayList(Word),
/// Type declaration instructions, constant instructions, global variable declarations, OpUndef instructions.
types_globals_constants: std.ArrayList(Word),
/// Regular functions.
fn_decls: std.ArrayList(Word),
},
/// Global type cache to reduce the amount of generated types.
types: TypeMap,
/// Cache for results of OpString instructions for module file names fed to OpSource.
/// Since OpString is pretty much only used for those, we don't need to keep track of all strings,
/// just the ones for OpLine. Note that OpLine needs the result of OpString, and not that of OpSource.
file_names: std.StringHashMap(ResultId),
pub fn init(gpa: *Allocator, module: *Module) SPIRVModule {
return .{
.gpa = gpa,
.module = module,
.next_result_id = 1, // 0 is an invalid SPIR-V result ID.
.types_globals_constants = std.ArrayList(u32).init(allocator),
.fn_decls = std.ArrayList(u32).init(allocator),
.binary = .{
.capabilities_and_extensions = std.ArrayList(Word).init(gpa),
.debug_strings = std.ArrayList(Word).init(gpa),
.types_globals_constants = std.ArrayList(Word).init(gpa),
.fn_decls = std.ArrayList(Word).init(gpa),
},
.types = TypeMap.init(gpa),
.file_names = std.StringHashMap(ResultId).init(gpa),
};
}
pub fn deinit(self: *SPIRVModule) void {
self.types_globals_constants.deinit();
self.fn_decls.deinit();
self.file_names.deinit();
self.types.deinit();
self.binary.fn_decls.deinit();
self.binary.types_globals_constants.deinit();
self.binary.debug_strings.deinit();
self.binary.capabilities_and_extensions.deinit();
}
pub fn allocResultId(self: *SPIRVModule) u32 {
pub fn allocResultId(self: *SPIRVModule) Word {
defer self.next_result_id += 1;
return self.next_result_id;
}
pub fn resultIdBound(self: *SPIRVModule) u32 {
pub fn resultIdBound(self: *SPIRVModule) Word {
return self.next_result_id;
}
fn resolveSourceFileName(self: *SPIRVModule, decl: *Decl) !ResultId {
const path = decl.namespace.file_scope.sub_file_path;
const result = try self.file_names.getOrPut(path);
if (!result.found_existing) {
result.entry.value = self.allocResultId();
try writeInstructionWithString(&self.binary.debug_strings, .OpString, &[_]Word{result.entry.value}, path);
try writeInstruction(&self.binary.debug_strings, .OpSource, &[_]Word{
@enumToInt(spec.SourceLanguage.Unknown), // TODO: Register Zig source language.
0, // TODO: Zig version as u32?
result.entry.value,
});
}
return result.entry.value;
}
};
/// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that.
pub const DeclGen = struct {
module: *Module,
/// The SPIR-V module code should be put in.
spv: *SPIRVModule,
args: std.ArrayList(u32),
/// An array of function argument result-ids. Each index corresponds with the function argument of the same index.
args: std.ArrayList(ResultId),
/// A counter to keep track of how many `arg` instructions we've seen yet.
next_arg_index: u32,
types: TypeMap,
values: ValueMap,
/// A map keeping track of which instruction generated which result-id.
inst_results: InstMap,
/// We need to keep track of result ids for block labels, as well as the 'incoming' blocks for a block.
blocks: BlockMap,
/// The label of the SPIR-V block we are currently generating.
current_block_label_id: ResultId,
/// The actual instructions for this function. We need to declare all locals in the first block, and because we don't
/// know which locals there are going to be, we're just going to generate everything after the locals-section in this array.
/// Note: It will not contain OpFunction, OpFunctionParameter, OpVariable and the initial OpLabel. These will be generated
/// into spv.binary.fn_decls directly.
code: std.ArrayList(Word),
/// The decl we are currently generating code for.
decl: *Decl,
/// If `gen` returned `Error.AnalysisFail`, this contains an explanatory message. Memory is owned by
/// `module.gpa`.
error_msg: ?*Module.ErrorMsg,
/// Possible errors the `gen` function may return.
const Error = error{ AnalysisFail, OutOfMemory };
/// This structure is used to return information about a type typically used for arithmetic operations.
@ -117,19 +234,69 @@ pub const DeclGen = struct {
class: Class,
};
/// Initialize the common resources of a DeclGen. Some fields are left uninitialized, only set when `gen` is called.
pub fn init(spv: *SPIRVModule) DeclGen {
return .{
.spv = spv,
.args = std.ArrayList(ResultId).init(spv.gpa),
.next_arg_index = undefined,
.inst_results = InstMap.init(spv.gpa),
.blocks = BlockMap.init(spv.gpa),
.current_block_label_id = undefined,
.code = std.ArrayList(Word).init(spv.gpa),
.decl = undefined,
.error_msg = undefined,
};
}
/// Generate the code for `decl`. If a reportable error occured during code generation,
/// a message is returned by this function. Callee owns the memory. If this function returns such
/// a reportable error, it is valid to be called again for a different decl.
pub fn gen(self: *DeclGen, decl: *Decl) !?*Module.ErrorMsg {
// Reset internal resources, we don't want to re-allocate these.
self.args.items.len = 0;
self.next_arg_index = 0;
self.inst_results.clearRetainingCapacity();
self.blocks.clearRetainingCapacity();
self.current_block_label_id = undefined;
self.code.items.len = 0;
self.decl = decl;
self.error_msg = null;
try self.genDecl();
return self.error_msg;
}
/// Free resources owned by the DeclGen.
pub fn deinit(self: *DeclGen) void {
self.args.deinit();
self.inst_results.deinit();
self.blocks.deinit();
self.code.deinit();
}
fn getTarget(self: *DeclGen) std.Target {
return self.spv.module.getTarget();
}
fn fail(self: *DeclGen, src: LazySrcLoc, comptime format: []const u8, args: anytype) Error {
@setCold(true);
const src_loc = src.toSrcLocWithDecl(self.decl);
self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, format, args);
self.error_msg = try Module.ErrorMsg.create(self.spv.module.gpa, src_loc, format, args);
return error.AnalysisFail;
}
fn resolve(self: *DeclGen, inst: *Inst) !u32 {
fn resolve(self: *DeclGen, inst: *Inst) !ResultId {
if (inst.value()) |val| {
return self.genConstant(inst.ty, val);
return self.genConstant(inst.src, inst.ty, val);
}
return self.values.get(inst).?; // Instruction does not dominate all uses!
return self.inst_results.get(inst).?; // Instruction does not dominate all uses!
}
fn beginSPIRVBlock(self: *DeclGen, label_id: ResultId) !void {
try writeInstruction(&self.code, .OpLabel, &[_]Word{label_id});
self.current_block_label_id = label_id;
}
/// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need
@ -143,9 +310,9 @@ pub const DeclGen = struct {
/// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers).
/// TODO: Should the result of this function be cached?
fn backingIntBits(self: *DeclGen, bits: u16) ?u16 {
const target = self.module.getTarget();
const target = self.getTarget();
// TODO: Figure out what to do with u0/i0.
// The backend will never be asked to compiler a 0-bit integer, so we won't have to handle those in this function.
std.debug.assert(bits != 0);
// 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively.
@ -178,7 +345,7 @@ pub const DeclGen = struct {
/// is no way of knowing whether those are actually supported.
/// TODO: Maybe this should be cached?
fn largestSupportedIntBits(self: *DeclGen) u16 {
const target = self.module.getTarget();
const target = self.getTarget();
return if (Target.spirv.featureSetHas(target.cpu.features, .Int64))
64
else
@ -193,8 +360,7 @@ pub const DeclGen = struct {
}
fn arithmeticTypeInfo(self: *DeclGen, ty: Type) !ArithmeticTypeInfo {
const target = self.module.getTarget();
const target = self.getTarget();
return switch (ty.zigTypeTag()) {
.Bool => ArithmeticTypeInfo{
.bits = 1, // Doesn't matter for this class.
@ -229,72 +395,108 @@ pub const DeclGen = struct {
/// Generate a constant representing `val`.
/// TODO: Deduplication?
fn genConstant(self: *DeclGen, ty: Type, val: Value) Error!u32 {
const code = &self.spv.types_globals_constants;
fn genConstant(self: *DeclGen, src: LazySrcLoc, ty: Type, val: Value) Error!ResultId {
const target = self.getTarget();
const code = &self.spv.binary.types_globals_constants;
const result_id = self.spv.allocResultId();
const result_type_id = try self.getOrGenType(ty);
const result_type_id = try self.genType(src, ty);
if (val.isUndef()) {
try writeInstruction(code, .OpUndef, &[_]u32{ result_type_id, result_id });
try writeInstruction(code, .OpUndef, &[_]Word{ result_type_id, result_id });
return result_id;
}
switch (ty.zigTypeTag()) {
.Int => {
const int_info = ty.intInfo(target);
const backing_bits = self.backingIntBits(int_info.bits) orelse {
// Integers too big for any native type are represented as "composite integers": An array of largestSupportedIntBits.
return self.fail(src, "TODO: SPIR-V backend: implement composite int constants for {}", .{ty});
};
// We can just use toSignedInt/toUnsignedInt here as it returns u64 - a type large enough to hold any
// SPIR-V native type (up to i/u64 with Int64). If SPIR-V ever supports native ints of a larger size, this
// might need to be updated.
std.debug.assert(self.largestSupportedIntBits() <= std.meta.bitCount(u64));
var int_bits = if (ty.isSignedInt()) @bitCast(u64, val.toSignedInt()) else val.toUnsignedInt();
// Mask the low bits which make up the actual integer. This is to make sure that negative values
// only use the actual bits of the type.
// TODO: Should this be the backing type bits or the actual type bits?
int_bits &= (@as(u64, 1) << @intCast(u6, backing_bits)) - 1;
switch (backing_bits) {
0 => unreachable,
1...32 => try writeInstruction(code, .OpConstant, &[_]Word{
result_type_id,
result_id,
@truncate(u32, int_bits),
}),
33...64 => try writeInstruction(code, .OpConstant, &[_]Word{
result_type_id,
result_id,
@truncate(u32, int_bits),
@truncate(u32, int_bits >> @bitSizeOf(u32)),
}),
else => unreachable, // backing_bits is bounded by largestSupportedIntBits.
}
},
.Bool => {
const opcode: Opcode = if (val.toBool()) .OpConstantTrue else .OpConstantFalse;
try writeInstruction(code, opcode, &[_]u32{ result_type_id, result_id });
try writeInstruction(code, opcode, &[_]Word{ result_type_id, result_id });
},
.Float => {
// At this point we are guaranteed that the target floating point type is supported, otherwise the function
// would have exited at getOrGenType(ty).
// would have exited at genType(ty).
// f16 and f32 require one word of storage. f64 requires 2, low-order first.
switch (val.tag()) {
.float_16 => try writeInstruction(code, .OpConstant, &[_]u32{ result_type_id, result_id, @bitCast(u16, val.castTag(.float_16).?.data) }),
.float_32 => try writeInstruction(code, .OpConstant, &[_]u32{ result_type_id, result_id, @bitCast(u32, val.castTag(.float_32).?.data) }),
.float_64 => {
const float_bits = @bitCast(u64, val.castTag(.float_64).?.data);
try writeInstruction(code, .OpConstant, &[_]u32{
switch (ty.floatBits(target)) {
16 => try writeInstruction(code, .OpConstant, &[_]Word{ result_type_id, result_id, @bitCast(u16, val.toFloat(f16)) }),
32 => try writeInstruction(code, .OpConstant, &[_]Word{ result_type_id, result_id, @bitCast(u32, val.toFloat(f32)) }),
64 => {
const float_bits = @bitCast(u64, val.toFloat(f64));
try writeInstruction(code, .OpConstant, &[_]Word{
result_type_id,
result_id,
@truncate(u32, float_bits),
@truncate(u32, float_bits >> 32),
@truncate(u32, float_bits >> @bitSizeOf(u32)),
});
},
.float_128 => unreachable, // Filtered out in the call to getOrGenType.
// TODO: What tags do we need to handle here anyway?
else => return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: float constant generation of value {s}\n", .{val.tag()}),
128 => unreachable, // Filtered out in the call to genType.
// TODO: Insert case for long double when the layout for that is determined.
else => unreachable,
}
},
else => return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: constant generation of type {s}\n", .{ty.zigTypeTag()}),
.Void => unreachable,
else => return self.fail(src, "TODO: SPIR-V backend: constant generation of type {}", .{ty}),
}
return result_id;
}
fn getOrGenType(self: *DeclGen, ty: Type) Error!u32 {
fn genType(self: *DeclGen, src: LazySrcLoc, ty: Type) Error!ResultId {
// We can't use getOrPut here so we can recursively generate types.
if (self.types.get(ty)) |already_generated| {
if (self.spv.types.get(ty)) |already_generated| {
return already_generated;
}
const target = self.module.getTarget();
const code = &self.spv.types_globals_constants;
const target = self.getTarget();
const code = &self.spv.binary.types_globals_constants;
const result_id = self.spv.allocResultId();
switch (ty.zigTypeTag()) {
.Void => try writeInstruction(code, .OpTypeVoid, &[_]u32{result_id}),
.Bool => try writeInstruction(code, .OpTypeBool, &[_]u32{result_id}),
.Void => try writeInstruction(code, .OpTypeVoid, &[_]Word{result_id}),
.Bool => try writeInstruction(code, .OpTypeBool, &[_]Word{result_id}),
.Int => {
const int_info = ty.intInfo(target);
const backing_bits = self.backingIntBits(int_info.bits) orelse {
// Integers too big for any native type are represented as "composite integers": An array of largestSupportedIntBits.
return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement composite ints {}", .{ty});
return self.fail(src, "TODO: SPIR-V backend: implement composite int {}", .{ty});
};
// TODO: If backing_bits != int_info.bits, a duplicate type might be generated here.
try writeInstruction(code, .OpTypeInt, &[_]u32{
try writeInstruction(code, .OpTypeInt, &[_]Word{
result_id,
backing_bits,
switch (int_info.signedness) {
@ -316,38 +518,40 @@ pub const DeclGen = struct {
};
if (!supported) {
return self.fail(.{ .node_offset = 0 }, "Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits});
return self.fail(src, "Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits});
}
try writeInstruction(code, .OpTypeFloat, &[_]u32{ result_id, bits });
try writeInstruction(code, .OpTypeFloat, &[_]Word{ result_id, bits });
},
.Fn => {
// We only support zig-calling-convention functions, no varargs.
if (ty.fnCallingConvention() != .Unspecified)
return self.fail(.{ .node_offset = 0 }, "Unsupported calling convention for SPIR-V", .{});
return self.fail(src, "Unsupported calling convention for SPIR-V", .{});
if (ty.fnIsVarArgs())
return self.fail(.{ .node_offset = 0 }, "VarArgs unsupported for SPIR-V", .{});
return self.fail(src, "VarArgs unsupported for SPIR-V", .{});
// In order to avoid a temporary here, first generate all the required types and then simply look them up
// when generating the function type.
const params = ty.fnParamLen();
var i: usize = 0;
while (i < params) : (i += 1) {
_ = try self.getOrGenType(ty.fnParamType(i));
_ = try self.genType(src, ty.fnParamType(i));
}
const return_type_id = try self.getOrGenType(ty.fnReturnType());
const return_type_id = try self.genType(src, ty.fnReturnType());
// result id + result type id + parameter type ids.
try writeOpcode(code, .OpTypeFunction, 2 + @intCast(u32, ty.fnParamLen()));
try writeOpcode(code, .OpTypeFunction, 2 + @intCast(u16, ty.fnParamLen()));
try code.appendSlice(&.{ result_id, return_type_id });
i = 0;
while (i < params) : (i += 1) {
const param_type_id = self.types.get(ty.fnParamType(i)).?;
const param_type_id = self.spv.types.get(ty.fnParamType(i)).?;
try code.append(param_type_id);
}
},
// When recursively generating a type, we cannot infer the pointer's storage class. See genPointerType.
.Pointer => return self.fail(src, "Cannot create pointer with unkown storage class", .{}),
.Vector => {
// Although not 100% the same, Zig vectors map quite neatly to SPIR-V vectors (including many integer and float operations
// which work on them), so simply use those.
@ -357,7 +561,7 @@ pub const DeclGen = struct {
// is adequate at all for this.
// TODO: Vectors are not yet supported by the self-hosted compiler itself it seems.
return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement type Vector", .{});
return self.fail(src, "TODO: SPIR-V backend: implement type Vector", .{});
},
.Null,
.Undefined,
@ -369,24 +573,42 @@ pub const DeclGen = struct {
.BoundFn => unreachable, // this type will be deleted from the language.
else => |tag| return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement type {}s", .{tag}),
else => |tag| return self.fail(src, "TODO: SPIR-V backend: implement type {}s", .{tag}),
}
try self.types.putNoClobber(ty, result_id);
try self.spv.types.putNoClobber(ty, result_id);
return result_id;
}
pub fn gen(self: *DeclGen) !void {
/// SPIR-V requires pointers to have a storage class (address space), and so we have a special function for that.
/// TODO: The result of this needs to be cached.
fn genPointerType(self: *DeclGen, src: LazySrcLoc, ty: Type, storage_class: spec.StorageClass) !ResultId {
std.debug.assert(ty.zigTypeTag() == .Pointer);
const code = &self.spv.binary.types_globals_constants;
const result_id = self.spv.allocResultId();
// TODO: There are many constraints which are ignored for now: We may only create pointers to certain types, and to other types
// if more capabilities are enabled. For example, we may only create pointers to f16 if Float16Buffer is enabled.
// These also relates to the pointer's address space.
const child_id = try self.genType(src, ty.elemType());
try writeInstruction(code, .OpTypePointer, &[_]Word{ result_id, @enumToInt(storage_class), child_id });
return result_id;
}
fn genDecl(self: *DeclGen) !void {
const decl = self.decl;
const result_id = decl.fn_link.spirv.id;
if (decl.val.castTag(.function)) |func_payload| {
std.debug.assert(decl.ty.zigTypeTag() == .Fn);
const prototype_id = try self.getOrGenType(decl.ty);
try writeInstruction(&self.spv.fn_decls, .OpFunction, &[_]u32{
self.types.get(decl.ty.fnReturnType()).?, // This type should be generated along with the prototype.
const prototype_id = try self.genType(.{ .node_offset = 0 }, decl.ty);
try writeInstruction(&self.spv.binary.fn_decls, .OpFunction, &[_]Word{
self.spv.types.get(decl.ty.fnReturnType()).?, // This type should be generated along with the prototype.
result_id,
@bitCast(u32, spec.FunctionControl{}), // TODO: We can set inline here if the type requires it.
@bitCast(Word, spec.FunctionControl{}), // TODO: We can set inline here if the type requires it.
prototype_id,
});
@ -395,33 +617,38 @@ pub const DeclGen = struct {
try self.args.ensureCapacity(params);
while (i < params) : (i += 1) {
const param_type_id = self.types.get(decl.ty.fnParamType(i)).?;
const param_type_id = self.spv.types.get(decl.ty.fnParamType(i)).?;
const arg_result_id = self.spv.allocResultId();
try writeInstruction(&self.spv.fn_decls, .OpFunctionParameter, &[_]u32{ param_type_id, arg_result_id });
try writeInstruction(&self.spv.binary.fn_decls, .OpFunctionParameter, &[_]Word{ param_type_id, arg_result_id });
self.args.appendAssumeCapacity(arg_result_id);
}
// TODO: This could probably be done in a better way...
const root_block_id = self.spv.allocResultId();
_ = try writeInstruction(&self.spv.fn_decls, .OpLabel, &[_]u32{root_block_id});
// We need to generate the label directly in the fn_decls here because we're going to write the local variables after
// here. Since we're not generating in self.code, we're just going to bypass self.beginSPIRVBlock here.
try writeInstruction(&self.spv.binary.fn_decls, .OpLabel, &[_]Word{root_block_id});
self.current_block_label_id = root_block_id;
try self.genBody(func_payload.data.body);
try writeInstruction(&self.spv.fn_decls, .OpFunctionEnd, &[_]u32{});
// Append the actual code into the fn_decls section.
try self.spv.binary.fn_decls.appendSlice(self.code.items);
try writeInstruction(&self.spv.binary.fn_decls, .OpFunctionEnd, &[_]Word{});
} else {
return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: generate decl type {}", .{decl.ty.zigTypeTag()});
}
}
fn genBody(self: *DeclGen, body: ir.Body) !void {
fn genBody(self: *DeclGen, body: ir.Body) Error!void {
for (body.instructions) |inst| {
const maybe_result_id = try self.genInst(inst);
if (maybe_result_id) |result_id|
try self.values.putNoClobber(inst, result_id);
try self.genInst(inst);
}
}
fn genInst(self: *DeclGen, inst: *Inst) !?u32 {
return switch (inst.tag) {
fn genInst(self: *DeclGen, inst: *Inst) !void {
const result_id = switch (inst.tag) {
.add, .addwrap => try self.genBinOp(inst.castTag(.add).?),
.sub, .subwrap => try self.genBinOp(inst.castTag(.sub).?),
.mul, .mulwrap => try self.genBinOp(inst.castTag(.mul).?),
@ -429,34 +656,45 @@ pub const DeclGen = struct {
.bit_and => try self.genBinOp(inst.castTag(.bit_and).?),
.bit_or => try self.genBinOp(inst.castTag(.bit_or).?),
.xor => try self.genBinOp(inst.castTag(.xor).?),
.cmp_eq => try self.genBinOp(inst.castTag(.cmp_eq).?),
.cmp_neq => try self.genBinOp(inst.castTag(.cmp_neq).?),
.cmp_gt => try self.genBinOp(inst.castTag(.cmp_gt).?),
.cmp_gte => try self.genBinOp(inst.castTag(.cmp_gte).?),
.cmp_lt => try self.genBinOp(inst.castTag(.cmp_lt).?),
.cmp_lte => try self.genBinOp(inst.castTag(.cmp_lte).?),
.cmp_eq => try self.genCmp(inst.castTag(.cmp_eq).?),
.cmp_neq => try self.genCmp(inst.castTag(.cmp_neq).?),
.cmp_gt => try self.genCmp(inst.castTag(.cmp_gt).?),
.cmp_gte => try self.genCmp(inst.castTag(.cmp_gte).?),
.cmp_lt => try self.genCmp(inst.castTag(.cmp_lt).?),
.cmp_lte => try self.genCmp(inst.castTag(.cmp_lte).?),
.bool_and => try self.genBinOp(inst.castTag(.bool_and).?),
.bool_or => try self.genBinOp(inst.castTag(.bool_or).?),
.not => try self.genUnOp(inst.castTag(.not).?),
.alloc => try self.genAlloc(inst.castTag(.alloc).?),
.arg => self.genArg(),
.block => (try self.genBlock(inst.castTag(.block).?)) orelse return,
.br => return try self.genBr(inst.castTag(.br).?),
.br_void => return try self.genBrVoid(inst.castTag(.br_void).?),
// TODO: Breakpoints won't be supported in SPIR-V, but the compiler seems to insert them
// throughout the IR.
.breakpoint => null,
.dbg_stmt => null,
.ret => self.genRet(inst.castTag(.ret).?),
.retvoid => self.genRetVoid(),
.unreach => self.genUnreach(),
else => self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement inst {}", .{inst.tag}),
.breakpoint => return,
.condbr => return try self.genCondBr(inst.castTag(.condbr).?),
.constant => unreachable,
.dbg_stmt => return try self.genDbgStmt(inst.castTag(.dbg_stmt).?),
.load => try self.genLoad(inst.castTag(.load).?),
.loop => return try self.genLoop(inst.castTag(.loop).?),
.ret => return try self.genRet(inst.castTag(.ret).?),
.retvoid => return try self.genRetVoid(),
.store => return try self.genStore(inst.castTag(.store).?),
.unreach => return try self.genUnreach(),
else => return self.fail(inst.src, "TODO: SPIR-V backend: implement inst {s}", .{@tagName(inst.tag)}),
};
try self.inst_results.putNoClobber(inst, result_id);
}
fn genBinOp(self: *DeclGen, inst: *Inst.BinOp) !u32 {
fn genBinOp(self: *DeclGen, inst: *Inst.BinOp) !ResultId {
// TODO: Will lhs and rhs have the same type?
const lhs_id = try self.resolve(inst.lhs);
const rhs_id = try self.resolve(inst.rhs);
const result_id = self.spv.allocResultId();
const result_type_id = try self.getOrGenType(inst.base.ty);
const result_type_id = try self.genType(inst.base.src, inst.base.ty);
// TODO: Is the result the same as the argument types?
// This is supposed to be the case for SPIR-V.
@ -469,14 +707,16 @@ pub const DeclGen = struct {
// instead.
const info = try self.arithmeticTypeInfo(inst.lhs.ty);
if (info.class == .composite_integer)
return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: binary operations for composite integers", .{});
if (info.class == .composite_integer) {
return self.fail(inst.base.src, "TODO: SPIR-V backend: binary operations for composite integers", .{});
} else if (info.class == .strange_integer) {
return self.fail(inst.base.src, "TODO: SPIR-V backend: binary operations for strange integers", .{});
}
const is_bool = info.class == .bool;
const is_float = info.class == .float;
const is_signed = info.signedness == .signed;
// **Note**: All these operations must be valid for vectors of floats, integers and bools as well!
// For floating points, we generally want ordered operations (which return false if either operand is nan).
// **Note**: All these operations must be valid for vectors as well!
const opcode = switch (inst.base.tag) {
// The regular integer operations are all defined for wrapping. Since theyre only relevant for integers,
// we can just switch on both cases here.
@ -493,23 +733,13 @@ pub const DeclGen = struct {
.bit_and => Opcode.OpBitwiseAnd,
.bit_or => Opcode.OpBitwiseOr,
.xor => Opcode.OpBitwiseXor,
// Int/bool/float -> bool operations.
.cmp_eq => if (is_float) Opcode.OpFOrdEqual else if (is_bool) Opcode.OpLogicalEqual else Opcode.OpIEqual,
.cmp_neq => if (is_float) Opcode.OpFOrdNotEqual else if (is_bool) Opcode.OpLogicalNotEqual else Opcode.OpINotEqual,
// Int/float -> bool operations.
// TODO: Verify that these OpFOrd type operations produce the right value.
// TODO: Is there a more fundamental difference between OpU and OpS operations here than just the type?
.cmp_gt => if (is_float) Opcode.OpFOrdGreaterThan else if (is_signed) Opcode.OpSGreaterThan else Opcode.OpUGreaterThan,
.cmp_gte => if (is_float) Opcode.OpFOrdGreaterThanEqual else if (is_signed) Opcode.OpSGreaterThanEqual else Opcode.OpUGreaterThanEqual,
.cmp_lt => if (is_float) Opcode.OpFOrdLessThan else if (is_signed) Opcode.OpSLessThan else Opcode.OpULessThan,
.cmp_lte => if (is_float) Opcode.OpFOrdLessThanEqual else if (is_signed) Opcode.OpSLessThanEqual else Opcode.OpULessThanEqual,
// Bool -> bool operations.
.bool_and => Opcode.OpLogicalAnd,
.bool_or => Opcode.OpLogicalOr,
else => unreachable,
};
try writeInstruction(&self.spv.fn_decls, opcode, &[_]u32{ result_type_id, result_id, lhs_id, rhs_id });
try writeInstruction(&self.code, opcode, &[_]Word{ result_type_id, result_id, lhs_id, rhs_id });
// TODO: Trap on overflow? Probably going to be annoying.
// TODO: Look into SPV_KHR_no_integer_wrap_decoration which provides NoSignedWrap/NoUnsignedWrap.
@ -517,14 +747,59 @@ pub const DeclGen = struct {
if (info.class != .strange_integer)
return result_id;
return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: strange integer operation mask", .{});
return self.fail(inst.base.src, "TODO: SPIR-V backend: strange integer operation mask", .{});
}
fn genUnOp(self: *DeclGen, inst: *Inst.UnOp) !u32 {
fn genCmp(self: *DeclGen, inst: *Inst.BinOp) !ResultId {
const lhs_id = try self.resolve(inst.lhs);
const rhs_id = try self.resolve(inst.rhs);
const result_id = self.spv.allocResultId();
const result_type_id = try self.genType(inst.base.src, inst.base.ty);
// All of these operations should be 2 equal types -> bool
std.debug.assert(inst.rhs.ty.eql(inst.lhs.ty));
std.debug.assert(inst.base.ty.tag() == .bool);
// Comparisons are generally applicable to both scalar and vector operations in SPIR-V, but int and float
// versions of operations require different opcodes.
// Since inst.base.ty is always bool and so not very useful, and because both arguments must be the same, just get the info
// from either of the operands.
const info = try self.arithmeticTypeInfo(inst.lhs.ty);
if (info.class == .composite_integer) {
return self.fail(inst.base.src, "TODO: SPIR-V backend: binary operations for composite integers", .{});
} else if (info.class == .strange_integer) {
return self.fail(inst.base.src, "TODO: SPIR-V backend: comparison for strange integers", .{});
}
const is_bool = info.class == .bool;
const is_float = info.class == .float;
const is_signed = info.signedness == .signed;
// **Note**: All these operations must be valid for vectors as well!
// For floating points, we generally want ordered operations (which return false if either operand is nan).
const opcode = switch (inst.base.tag) {
.cmp_eq => if (is_float) Opcode.OpFOrdEqual else if (is_bool) Opcode.OpLogicalEqual else Opcode.OpIEqual,
.cmp_neq => if (is_float) Opcode.OpFOrdNotEqual else if (is_bool) Opcode.OpLogicalNotEqual else Opcode.OpINotEqual,
// TODO: Verify that these OpFOrd type operations produce the right value.
// TODO: Is there a more fundamental difference between OpU and OpS operations here than just the type?
.cmp_gt => if (is_float) Opcode.OpFOrdGreaterThan else if (is_signed) Opcode.OpSGreaterThan else Opcode.OpUGreaterThan,
.cmp_gte => if (is_float) Opcode.OpFOrdGreaterThanEqual else if (is_signed) Opcode.OpSGreaterThanEqual else Opcode.OpUGreaterThanEqual,
.cmp_lt => if (is_float) Opcode.OpFOrdLessThan else if (is_signed) Opcode.OpSLessThan else Opcode.OpULessThan,
.cmp_lte => if (is_float) Opcode.OpFOrdLessThanEqual else if (is_signed) Opcode.OpSLessThanEqual else Opcode.OpULessThanEqual,
else => unreachable,
};
try writeInstruction(&self.code, opcode, &[_]Word{ result_type_id, result_id, lhs_id, rhs_id });
return result_id;
}
fn genUnOp(self: *DeclGen, inst: *Inst.UnOp) !ResultId {
const operand_id = try self.resolve(inst.operand);
const result_id = self.spv.allocResultId();
const result_type_id = try self.getOrGenType(inst.base.ty);
const result_type_id = try self.genType(inst.base.src, inst.base.ty);
const info = try self.arithmeticTypeInfo(inst.operand.ty);
@ -534,32 +809,181 @@ pub const DeclGen = struct {
else => unreachable,
};
try writeInstruction(&self.spv.fn_decls, opcode, &[_]u32{ result_type_id, result_id, operand_id });
try writeInstruction(&self.code, opcode, &[_]Word{ result_type_id, result_id, operand_id });
return result_id;
}
fn genArg(self: *DeclGen) u32 {
fn genAlloc(self: *DeclGen, inst: *Inst.NoOp) !ResultId {
const storage_class = spec.StorageClass.Function;
const result_type_id = try self.genPointerType(inst.base.src, inst.base.ty, storage_class);
const result_id = self.spv.allocResultId();
// Rather than generating into code here, we're just going to generate directly into the fn_decls section so that
// variable declarations appear in the first block of the function.
try writeInstruction(&self.spv.binary.fn_decls, .OpVariable, &[_]Word{ result_type_id, result_id, @enumToInt(storage_class) });
return result_id;
}
fn genArg(self: *DeclGen) ResultId {
defer self.next_arg_index += 1;
return self.args.items[self.next_arg_index];
}
fn genRet(self: *DeclGen, inst: *Inst.UnOp) !?u32 {
fn genBlock(self: *DeclGen, inst: *Inst.Block) !?ResultId {
// In IR, a block doesn't really define an entry point like a block, but more like a scope that breaks can jump out of and
// "return" a value from. This cannot be directly modelled in SPIR-V, so in a block instruction, we're going to split up
// the current block by first generating the code of the block, then a label, and then generate the rest of the current
// ir.Block in a different SPIR-V block.
const label_id = self.spv.allocResultId();
// 4 chosen as arbitrary initial capacity.
var incoming_blocks = try std.ArrayListUnmanaged(IncomingBlock).initCapacity(self.spv.gpa, 4);
try self.blocks.putNoClobber(inst, .{
.label_id = label_id,
.incoming_blocks = &incoming_blocks,
});
defer {
self.blocks.removeAssertDiscard(inst);
incoming_blocks.deinit(self.spv.gpa);
}
try self.genBody(inst.body);
try self.beginSPIRVBlock(label_id);
// If this block didn't produce a value, simply return here.
if (!inst.base.ty.hasCodeGenBits())
return null;
// Combine the result from the blocks using the Phi instruction.
const result_id = self.spv.allocResultId();
// TODO: OpPhi is limited in the types that it may produce, such as pointers. Figure out which other types
// are not allowed to be created from a phi node, and throw an error for those. For now, genType already throws
// an error for pointers.
const result_type_id = try self.genType(inst.base.src, inst.base.ty);
try writeOpcode(&self.code, .OpPhi, 2 + @intCast(u16, incoming_blocks.items.len * 2)); // result type + result + variable/parent...
for (incoming_blocks.items) |incoming| {
try self.code.appendSlice(&[_]Word{ incoming.break_value_id, incoming.src_label_id });
}
return result_id;
}
fn genBr(self: *DeclGen, inst: *Inst.Br) !void {
// TODO: This instruction needs to be the last in a block. Is that guaranteed?
const target = self.blocks.get(inst.block).?;
// TODO: For some reason, br is emitted with void parameters.
if (inst.operand.ty.hasCodeGenBits()) {
const operand_id = try self.resolve(inst.operand);
// current_block_label_id should not be undefined here, lest there is a br or br_void in the function's body.
try target.incoming_blocks.append(self.spv.gpa, .{
.src_label_id = self.current_block_label_id,
.break_value_id = operand_id
});
}
try writeInstruction(&self.code, .OpBranch, &[_]Word{target.label_id});
}
fn genBrVoid(self: *DeclGen, inst: *Inst.BrVoid) !void {
// TODO: This instruction needs to be the last in a block. Is that guaranteed?
const target = self.blocks.get(inst.block).?;
// Don't need to add this to the incoming block list, as there is no value to insert in the phi node anyway.
try writeInstruction(&self.code, .OpBranch, &[_]Word{target.label_id});
}
fn genCondBr(self: *DeclGen, inst: *Inst.CondBr) !void {
// TODO: This instruction needs to be the last in a block. Is that guaranteed?
const condition_id = try self.resolve(inst.condition);
// These will always generate a new SPIR-V block, since they are ir.Body and not ir.Block.
const then_label_id = self.spv.allocResultId();
const else_label_id = self.spv.allocResultId();
// TODO: We can generate OpSelectionMerge here if we know the target block that both of these will resolve to,
// but i don't know if those will always resolve to the same block.
try writeInstruction(&self.code, .OpBranchConditional, &[_]Word{
condition_id,
then_label_id,
else_label_id,
});
try self.beginSPIRVBlock(then_label_id);
try self.genBody(inst.then_body);
try self.beginSPIRVBlock(else_label_id);
try self.genBody(inst.else_body);
}
fn genDbgStmt(self: *DeclGen, inst: *Inst.DbgStmt) !void {
const src_fname_id = try self.spv.resolveSourceFileName(self.decl);
try writeInstruction(&self.code, .OpLine, &[_]Word{ src_fname_id, inst.line, inst.column });
}
fn genLoad(self: *DeclGen, inst: *Inst.UnOp) !ResultId {
const operand_id = try self.resolve(inst.operand);
const result_type_id = try self.genType(inst.base.src, inst.base.ty);
const result_id = self.spv.allocResultId();
const operands = if (inst.base.ty.isVolatilePtr())
&[_]Word{ result_type_id, result_id, operand_id, @bitCast(u32, spec.MemoryAccess{.Volatile = true}) }
else
&[_]Word{ result_type_id, result_id, operand_id};
try writeInstruction(&self.code, .OpLoad, operands);
return result_id;
}
fn genLoop(self: *DeclGen, inst: *Inst.Loop) !void {
// TODO: This instruction needs to be the last in a block. Is that guaranteed?
const loop_label_id = self.spv.allocResultId();
// Jump to the loop entry point
try writeInstruction(&self.code, .OpBranch, &[_]Word{ loop_label_id });
// TODO: Look into OpLoopMerge.
try self.beginSPIRVBlock(loop_label_id);
try self.genBody(inst.body);
try writeInstruction(&self.code, .OpBranch, &[_]Word{ loop_label_id });
}
fn genRet(self: *DeclGen, inst: *Inst.UnOp) !void {
const operand_id = try self.resolve(inst.operand);
// TODO: This instruction needs to be the last in a block. Is that guaranteed?
try writeInstruction(&self.spv.fn_decls, .OpReturnValue, &[_]u32{operand_id});
return null;
try writeInstruction(&self.code, .OpReturnValue, &[_]Word{operand_id});
}
fn genRetVoid(self: *DeclGen) !?u32 {
fn genRetVoid(self: *DeclGen) !void {
// TODO: This instruction needs to be the last in a block. Is that guaranteed?
try writeInstruction(&self.spv.fn_decls, .OpReturn, &[_]u32{});
return null;
try writeInstruction(&self.code, .OpReturn, &[_]Word{});
}
fn genUnreach(self: *DeclGen) !?u32 {
fn genStore(self: *DeclGen, inst: *Inst.BinOp) !void {
const dst_ptr_id = try self.resolve(inst.lhs);
const src_val_id = try self.resolve(inst.rhs);
const operands = if (inst.lhs.ty.isVolatilePtr())
&[_]Word{ dst_ptr_id, src_val_id, @bitCast(u32, spec.MemoryAccess{.Volatile = true}) }
else
&[_]Word{ dst_ptr_id, src_val_id };
try writeInstruction(&self.code, .OpStore, operands);
}
fn genUnreach(self: *DeclGen) !void {
// TODO: This instruction needs to be the last in a block. Is that guaranteed?
try writeInstruction(&self.spv.fn_decls, .OpUnreachable, &[_]u32{});
return null;
try writeInstruction(&self.code, .OpUnreachable, &[_]Word{});
}
};

View File

@ -31,15 +31,18 @@ const Module = @import("../Module.zig");
const Compilation = @import("../Compilation.zig");
const link = @import("../link.zig");
const codegen = @import("../codegen/spirv.zig");
const Word = codegen.Word;
const ResultId = codegen.ResultId;
const trace = @import("../tracy.zig").trace;
const build_options = @import("build_options");
const spec = @import("../codegen/spirv/spec.zig");
// TODO: Should this struct be used at all rather than just a hashmap of aux data for every decl?
pub const FnData = struct {
// We're going to fill these in flushModule, and we're going to fill them unconditionally,
// so just set it to undefined.
id: u32 = undefined };
// We're going to fill these in flushModule, and we're going to fill them unconditionally,
// so just set it to undefined.
id: ResultId = undefined,
};
base: link.File,
@ -129,7 +132,7 @@ pub fn flushModule(self: *SpirV, comp: *Compilation) !void {
const module = self.base.options.module.?;
const target = comp.getTarget();
var spv = codegen.SPIRVModule.init(self.base.allocator);
var spv = codegen.SPIRVModule.init(self.base.allocator, module);
defer spv.deinit();
// Allocate an ID for every declaration before generating code,
@ -143,85 +146,67 @@ pub fn flushModule(self: *SpirV, comp: *Compilation) !void {
if (!decl.has_tv) continue;
decl.fn_link.spirv.id = spv.allocResultId();
log.debug("Allocating id {} to '{s}'", .{ decl.fn_link.spirv.id, std.mem.spanZ(decl.name) });
}
}
// Now, actually generate the code for all declarations.
{
// We are just going to re-use this same DeclGen for every Decl, and we are just going to
// change the decl. Otherwise, we would have to keep a separate `args` and `types`, and re-construct this
// structure every time.
var decl_gen = codegen.DeclGen{
.module = module,
.spv = &spv,
.args = std.ArrayList(u32).init(self.base.allocator),
.next_arg_index = undefined,
.types = codegen.TypeMap.init(self.base.allocator),
.values = codegen.ValueMap.init(self.base.allocator),
.decl = undefined,
.error_msg = undefined,
};
defer decl_gen.values.deinit();
defer decl_gen.types.deinit();
defer decl_gen.args.deinit();
var decl_gen = codegen.DeclGen.init(&spv);
defer decl_gen.deinit();
for (self.decl_table.items()) |entry| {
const decl = entry.key;
if (!decl.has_tv) continue;
decl_gen.args.items.len = 0;
decl_gen.next_arg_index = 0;
decl_gen.decl = decl;
decl_gen.error_msg = null;
decl_gen.gen() catch |err| switch (err) {
error.AnalysisFail => {
try module.failed_decls.put(module.gpa, decl, decl_gen.error_msg.?);
return;
},
else => |e| return e,
};
if (try decl_gen.gen(decl)) |msg| {
try module.failed_decls.put(module.gpa, decl, msg);
return; // TODO: Attempt to generate more decls?
}
}
}
var binary = std.ArrayList(u32).init(self.base.allocator);
defer binary.deinit();
try writeCapabilities(&spv.binary.capabilities_and_extensions, target);
try writeMemoryModel(&spv.binary.capabilities_and_extensions, target);
try binary.appendSlice(&[_]u32{
const header = [_]Word{
spec.magic_number,
(spec.version.major << 16) | (spec.version.minor << 8),
0, // TODO: Register Zig compiler magic number.
spv.resultIdBound(), // ID bound.
spv.resultIdBound(),
0, // Schema (currently reserved for future use in the SPIR-V spec).
});
try writeCapabilities(&binary, target);
try writeMemoryModel(&binary, target);
};
// Note: The order of adding sections to the final binary
// follows the SPIR-V logical module format!
var all_buffers = [_]std.os.iovec_const{
wordsToIovConst(binary.items),
wordsToIovConst(spv.types_globals_constants.items),
wordsToIovConst(spv.fn_decls.items),
const buffers = &[_][]const Word{
&header,
spv.binary.capabilities_and_extensions.items,
spv.binary.debug_strings.items,
spv.binary.types_globals_constants.items,
spv.binary.fn_decls.items,
};
const file = self.base.file.?;
const bytes = std.mem.sliceAsBytes(binary.items);
var iovc_buffers: [buffers.len]std.os.iovec_const = undefined;
for (iovc_buffers) |*iovc, i| {
const bytes = std.mem.sliceAsBytes(buffers[i]);
iovc.* = .{
.iov_base = bytes.ptr,
.iov_len = bytes.len
};
}
var file_size: u64 = 0;
for (all_buffers) |iov| {
for (iovc_buffers) |iov| {
file_size += iov.iov_len;
}
const file = self.base.file.?;
try file.seekTo(0);
try file.setEndPos(file_size);
try file.pwritevAll(&all_buffers, 0);
try file.pwritevAll(&iovc_buffers, 0);
}
fn writeCapabilities(binary: *std.ArrayList(u32), target: std.Target) !void {
fn writeCapabilities(binary: *std.ArrayList(Word), target: std.Target) !void {
// TODO: Integrate with a hypothetical feature system
const cap: spec.Capability = switch (target.os.tag) {
.opencl => .Kernel,
@ -230,10 +215,10 @@ fn writeCapabilities(binary: *std.ArrayList(u32), target: std.Target) !void {
else => unreachable, // TODO
};
try codegen.writeInstruction(binary, .OpCapability, &[_]u32{@enumToInt(cap)});
try codegen.writeInstruction(binary, .OpCapability, &[_]Word{@enumToInt(cap)});
}
fn writeMemoryModel(binary: *std.ArrayList(u32), target: std.Target) !void {
fn writeMemoryModel(binary: *std.ArrayList(Word), target: std.Target) !void {
const addressing_model = switch (target.os.tag) {
.opencl => switch (target.cpu.arch) {
.spirv32 => spec.AddressingModel.Physical32,
@ -251,15 +236,7 @@ fn writeMemoryModel(binary: *std.ArrayList(u32), target: std.Target) !void {
else => unreachable,
};
try codegen.writeInstruction(binary, .OpMemoryModel, &[_]u32{
try codegen.writeInstruction(binary, .OpMemoryModel, &[_]Word{
@enumToInt(addressing_model), @enumToInt(memory_model),
});
}
fn wordsToIovConst(words: []const u32) std.os.iovec_const {
const bytes = std.mem.sliceAsBytes(words);
return .{
.iov_base = bytes.ptr,
.iov_len = bytes.len,
};
}