mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 06:13:07 +00:00
Merge remote-tracking branch 'origin/master' into stage2-whole-file-astgen
Conflicts: * src/codegen/spirv.zig * src/link/SpirV.zig We're going to want to improve the stage2 test harness to print the source file name when a compile error occurs otherwise std lib contributors are going to see some confusing CI failures when they cause stage2 AstGen compile errors.
This commit is contained in:
commit
615d45da77
@ -20,7 +20,7 @@ cd $HOME
|
||||
wget -nv "https://ziglang.org/deps/$CACHE_BASENAME.tar.xz"
|
||||
tar xf "$CACHE_BASENAME.tar.xz"
|
||||
|
||||
QEMUBASE="qemu-linux-x86_64-5.2.0"
|
||||
QEMUBASE="qemu-linux-x86_64-5.2.0.1"
|
||||
wget -nv "https://ziglang.org/deps/$QEMUBASE.tar.xz"
|
||||
tar xf "$QEMUBASE.tar.xz"
|
||||
export PATH="$(pwd)/$QEMUBASE/bin:$PATH"
|
||||
|
||||
@ -12,6 +12,7 @@
|
||||
const std = @import("std");
|
||||
const root = @import("root");
|
||||
const mem = std.mem;
|
||||
const os = std.os;
|
||||
|
||||
/// We use this as a layer of indirection because global const pointers cannot
|
||||
/// point to thread-local variables.
|
||||
@ -42,16 +43,12 @@ const maybe_have_wipe_on_fork = std.Target.current.os.isAtLeast(.linux, .{
|
||||
.minor = 14,
|
||||
}) orelse true;
|
||||
|
||||
const WipeMe = struct {
|
||||
init_state: enum { uninitialized, initialized, failed },
|
||||
const Context = struct {
|
||||
init_state: enum(u8) { uninitialized = 0, initialized, failed },
|
||||
gimli: std.crypto.core.Gimli,
|
||||
};
|
||||
const wipe_align = if (maybe_have_wipe_on_fork) mem.page_size else @alignOf(WipeMe);
|
||||
|
||||
threadlocal var wipe_me: WipeMe align(wipe_align) = .{
|
||||
.gimli = undefined,
|
||||
.init_state = .uninitialized,
|
||||
};
|
||||
threadlocal var wipe_mem: []align(mem.page_size) u8 = &[_]u8{};
|
||||
|
||||
fn tlsCsprngFill(_: *const std.rand.Random, buffer: []u8) void {
|
||||
if (std.builtin.link_libc and @hasDecl(std.c, "arc4random_buf")) {
|
||||
@ -64,35 +61,69 @@ fn tlsCsprngFill(_: *const std.rand.Random, buffer: []u8) void {
|
||||
if (comptime std.meta.globalOption("crypto_always_getrandom", bool) orelse false) {
|
||||
return fillWithOsEntropy(buffer);
|
||||
}
|
||||
switch (wipe_me.init_state) {
|
||||
|
||||
if (wipe_mem.len == 0) {
|
||||
// Not initialized yet.
|
||||
if (want_fork_safety and maybe_have_wipe_on_fork) {
|
||||
// Allocate a per-process page, madvise operates with page
|
||||
// granularity.
|
||||
wipe_mem = os.mmap(
|
||||
null,
|
||||
@sizeOf(Context),
|
||||
os.PROT_READ | os.PROT_WRITE,
|
||||
os.MAP_PRIVATE | os.MAP_ANONYMOUS,
|
||||
-1,
|
||||
0,
|
||||
) catch |err| {
|
||||
// Could not allocate memory for the local state, fall back to
|
||||
// the OS syscall.
|
||||
return fillWithOsEntropy(buffer);
|
||||
};
|
||||
// The memory is already zero-initialized.
|
||||
} else {
|
||||
// Use a static thread-local buffer.
|
||||
const S = struct {
|
||||
threadlocal var buf: Context align(mem.page_size) = .{
|
||||
.init_state = .uninitialized,
|
||||
.gimli = undefined,
|
||||
};
|
||||
};
|
||||
wipe_mem = mem.asBytes(&S.buf);
|
||||
}
|
||||
}
|
||||
const ctx = @ptrCast(*Context, wipe_mem.ptr);
|
||||
|
||||
switch (ctx.init_state) {
|
||||
.uninitialized => {
|
||||
if (want_fork_safety) {
|
||||
if (maybe_have_wipe_on_fork) {
|
||||
if (std.os.madvise(
|
||||
@ptrCast([*]align(mem.page_size) u8, &wipe_me),
|
||||
@sizeOf(@TypeOf(wipe_me)),
|
||||
std.os.MADV_WIPEONFORK,
|
||||
)) |_| {
|
||||
return initAndFill(buffer);
|
||||
} else |_| if (std.Thread.use_pthreads) {
|
||||
return setupPthreadAtforkAndFill(buffer);
|
||||
} else {
|
||||
// Since we failed to set up fork safety, we fall back to always
|
||||
// calling getrandom every time.
|
||||
wipe_me.init_state = .failed;
|
||||
return fillWithOsEntropy(buffer);
|
||||
}
|
||||
} else if (std.Thread.use_pthreads) {
|
||||
return setupPthreadAtforkAndFill(buffer);
|
||||
} else {
|
||||
// We have no mechanism to provide fork safety, but we want fork safety,
|
||||
// so we fall back to calling getrandom every time.
|
||||
wipe_me.init_state = .failed;
|
||||
return fillWithOsEntropy(buffer);
|
||||
}
|
||||
} else {
|
||||
if (!want_fork_safety) {
|
||||
return initAndFill(buffer);
|
||||
}
|
||||
|
||||
if (maybe_have_wipe_on_fork) wof: {
|
||||
// Qemu user-mode emulation ignores any valid/invalid madvise
|
||||
// hint and returns success. Check if this is the case by
|
||||
// passing bogus parameters, we expect EINVAL as result.
|
||||
if (os.madvise(wipe_mem.ptr, 0, 0xffffffff)) |_| {
|
||||
break :wof;
|
||||
} else |_| {}
|
||||
|
||||
os.madvise(
|
||||
wipe_mem.ptr,
|
||||
wipe_mem.len,
|
||||
os.MADV_WIPEONFORK,
|
||||
) catch {
|
||||
return initAndFill(buffer);
|
||||
};
|
||||
}
|
||||
|
||||
if (std.Thread.use_pthreads) {
|
||||
return setupPthreadAtforkAndFill(buffer);
|
||||
}
|
||||
|
||||
// Since we failed to set up fork safety, we fall back to always
|
||||
// calling getrandom every time.
|
||||
ctx.init_state = .failed;
|
||||
return fillWithOsEntropy(buffer);
|
||||
},
|
||||
.initialized => {
|
||||
return fillWithCsprng(buffer);
|
||||
@ -110,7 +141,8 @@ fn tlsCsprngFill(_: *const std.rand.Random, buffer: []u8) void {
|
||||
fn setupPthreadAtforkAndFill(buffer: []u8) void {
|
||||
const failed = std.c.pthread_atfork(null, null, childAtForkHandler) != 0;
|
||||
if (failed) {
|
||||
wipe_me.init_state = .failed;
|
||||
const ctx = @ptrCast(*Context, wipe_mem.ptr);
|
||||
ctx.init_state = .failed;
|
||||
return fillWithOsEntropy(buffer);
|
||||
} else {
|
||||
return initAndFill(buffer);
|
||||
@ -118,21 +150,21 @@ fn setupPthreadAtforkAndFill(buffer: []u8) void {
|
||||
}
|
||||
|
||||
fn childAtForkHandler() callconv(.C) void {
|
||||
const wipe_slice = @ptrCast([*]u8, &wipe_me)[0..@sizeOf(@TypeOf(wipe_me))];
|
||||
std.crypto.utils.secureZero(u8, wipe_slice);
|
||||
std.crypto.utils.secureZero(u8, wipe_mem);
|
||||
}
|
||||
|
||||
fn fillWithCsprng(buffer: []u8) void {
|
||||
const ctx = @ptrCast(*Context, wipe_mem.ptr);
|
||||
if (buffer.len != 0) {
|
||||
wipe_me.gimli.squeeze(buffer);
|
||||
ctx.gimli.squeeze(buffer);
|
||||
} else {
|
||||
wipe_me.gimli.permute();
|
||||
ctx.gimli.permute();
|
||||
}
|
||||
mem.set(u8, wipe_me.gimli.toSlice()[0..std.crypto.core.Gimli.RATE], 0);
|
||||
mem.set(u8, ctx.gimli.toSlice()[0..std.crypto.core.Gimli.RATE], 0);
|
||||
}
|
||||
|
||||
fn fillWithOsEntropy(buffer: []u8) void {
|
||||
std.os.getrandom(buffer) catch @panic("getrandom() failed to provide entropy");
|
||||
os.getrandom(buffer) catch @panic("getrandom() failed to provide entropy");
|
||||
}
|
||||
|
||||
fn initAndFill(buffer: []u8) void {
|
||||
@ -147,11 +179,12 @@ fn initAndFill(buffer: []u8) void {
|
||||
fillWithOsEntropy(&seed);
|
||||
}
|
||||
|
||||
wipe_me.gimli = std.crypto.core.Gimli.init(seed);
|
||||
const ctx = @ptrCast(*Context, wipe_mem.ptr);
|
||||
ctx.gimli = std.crypto.core.Gimli.init(seed);
|
||||
|
||||
// This is at the end so that accidental recursive dependencies result
|
||||
// in stack overflows instead of invalid random data.
|
||||
wipe_me.init_state = .initialized;
|
||||
ctx.init_state = .initialized;
|
||||
|
||||
return fillWithCsprng(buffer);
|
||||
}
|
||||
|
||||
@ -38,9 +38,12 @@ pub fn Complex(comptime T: type) type {
|
||||
|
||||
/// Imaginary part.
|
||||
im: T,
|
||||
|
||||
/// Deprecated, use init()
|
||||
pub const new = init;
|
||||
|
||||
/// Create a new Complex number from the given real and imaginary parts.
|
||||
pub fn new(re: T, im: T) Self {
|
||||
pub fn init(re: T, im: T) Self {
|
||||
return Self{
|
||||
.re = re,
|
||||
.im = im,
|
||||
@ -110,32 +113,32 @@ pub fn Complex(comptime T: type) type {
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.add" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const b = Complex(f32).new(2, 7);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const b = Complex(f32).init(2, 7);
|
||||
const c = a.add(b);
|
||||
|
||||
try testing.expect(c.re == 7 and c.im == 10);
|
||||
}
|
||||
|
||||
test "complex.sub" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const b = Complex(f32).new(2, 7);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const b = Complex(f32).init(2, 7);
|
||||
const c = a.sub(b);
|
||||
|
||||
try testing.expect(c.re == 3 and c.im == -4);
|
||||
}
|
||||
|
||||
test "complex.mul" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const b = Complex(f32).new(2, 7);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const b = Complex(f32).init(2, 7);
|
||||
const c = a.mul(b);
|
||||
|
||||
try testing.expect(c.re == -11 and c.im == 41);
|
||||
}
|
||||
|
||||
test "complex.div" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const b = Complex(f32).new(2, 7);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const b = Complex(f32).init(2, 7);
|
||||
const c = a.div(b);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f32, c.re, @as(f32, 31) / 53, epsilon) and
|
||||
@ -143,14 +146,14 @@ test "complex.div" {
|
||||
}
|
||||
|
||||
test "complex.conjugate" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = a.conjugate();
|
||||
|
||||
try testing.expect(c.re == 5 and c.im == -3);
|
||||
}
|
||||
|
||||
test "complex.reciprocal" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = a.reciprocal();
|
||||
|
||||
try testing.expect(math.approxEqAbs(f32, c.re, @as(f32, 5) / 34, epsilon) and
|
||||
@ -158,7 +161,7 @@ test "complex.reciprocal" {
|
||||
}
|
||||
|
||||
test "complex.magnitude" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = a.magnitude();
|
||||
|
||||
try testing.expect(math.approxEqAbs(f32, c, 5.83095, epsilon));
|
||||
|
||||
@ -18,7 +18,7 @@ pub fn abs(z: anytype) @TypeOf(z.re) {
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.cabs" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = abs(a);
|
||||
try testing.expect(math.approxEqAbs(f32, c, 5.83095, epsilon));
|
||||
}
|
||||
|
||||
@ -13,13 +13,13 @@ const Complex = cmath.Complex;
|
||||
pub fn acos(z: anytype) Complex(@TypeOf(z.re)) {
|
||||
const T = @TypeOf(z.re);
|
||||
const q = cmath.asin(z);
|
||||
return Complex(T).new(@as(T, math.pi) / 2 - q.re, -q.im);
|
||||
return Complex(T).init(@as(T, math.pi) / 2 - q.re, -q.im);
|
||||
}
|
||||
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.cacos" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = acos(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f32, c.re, 0.546975, epsilon));
|
||||
|
||||
@ -13,13 +13,13 @@ const Complex = cmath.Complex;
|
||||
pub fn acosh(z: anytype) Complex(@TypeOf(z.re)) {
|
||||
const T = @TypeOf(z.re);
|
||||
const q = cmath.acos(z);
|
||||
return Complex(T).new(-q.im, q.re);
|
||||
return Complex(T).init(-q.im, q.re);
|
||||
}
|
||||
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.cacosh" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = acosh(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f32, c.re, 2.452914, epsilon));
|
||||
|
||||
@ -18,7 +18,7 @@ pub fn arg(z: anytype) @TypeOf(z.re) {
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.carg" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = arg(a);
|
||||
try testing.expect(math.approxEqAbs(f32, c, 0.540420, epsilon));
|
||||
}
|
||||
|
||||
@ -15,17 +15,17 @@ pub fn asin(z: anytype) Complex(@TypeOf(z.re)) {
|
||||
const x = z.re;
|
||||
const y = z.im;
|
||||
|
||||
const p = Complex(T).new(1.0 - (x - y) * (x + y), -2.0 * x * y);
|
||||
const q = Complex(T).new(-y, x);
|
||||
const p = Complex(T).init(1.0 - (x - y) * (x + y), -2.0 * x * y);
|
||||
const q = Complex(T).init(-y, x);
|
||||
const r = cmath.log(q.add(cmath.sqrt(p)));
|
||||
|
||||
return Complex(T).new(r.im, -r.re);
|
||||
return Complex(T).init(r.im, -r.re);
|
||||
}
|
||||
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.casin" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = asin(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f32, c.re, 1.023822, epsilon));
|
||||
|
||||
@ -12,15 +12,15 @@ const Complex = cmath.Complex;
|
||||
/// Returns the hyperbolic arc-sine of z.
|
||||
pub fn asinh(z: anytype) Complex(@TypeOf(z.re)) {
|
||||
const T = @TypeOf(z.re);
|
||||
const q = Complex(T).new(-z.im, z.re);
|
||||
const q = Complex(T).init(-z.im, z.re);
|
||||
const r = cmath.asin(q);
|
||||
return Complex(T).new(r.im, -r.re);
|
||||
return Complex(T).init(r.im, -r.re);
|
||||
}
|
||||
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.casinh" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = asinh(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f32, c.re, 2.459831, epsilon));
|
||||
|
||||
@ -49,14 +49,14 @@ fn atan32(z: Complex(f32)) Complex(f32) {
|
||||
|
||||
if ((x == 0.0) and (y > 1.0)) {
|
||||
// overflow
|
||||
return Complex(f32).new(maxnum, maxnum);
|
||||
return Complex(f32).init(maxnum, maxnum);
|
||||
}
|
||||
|
||||
const x2 = x * x;
|
||||
var a = 1.0 - x2 - (y * y);
|
||||
if (a == 0.0) {
|
||||
// overflow
|
||||
return Complex(f32).new(maxnum, maxnum);
|
||||
return Complex(f32).init(maxnum, maxnum);
|
||||
}
|
||||
|
||||
var t = 0.5 * math.atan2(f32, 2.0 * x, a);
|
||||
@ -66,12 +66,12 @@ fn atan32(z: Complex(f32)) Complex(f32) {
|
||||
a = x2 + t * t;
|
||||
if (a == 0.0) {
|
||||
// overflow
|
||||
return Complex(f32).new(maxnum, maxnum);
|
||||
return Complex(f32).init(maxnum, maxnum);
|
||||
}
|
||||
|
||||
t = y + 1.0;
|
||||
a = (x2 + (t * t)) / a;
|
||||
return Complex(f32).new(w, 0.25 * math.ln(a));
|
||||
return Complex(f32).init(w, 0.25 * math.ln(a));
|
||||
}
|
||||
|
||||
fn redupif64(x: f64) f64 {
|
||||
@ -98,14 +98,14 @@ fn atan64(z: Complex(f64)) Complex(f64) {
|
||||
|
||||
if ((x == 0.0) and (y > 1.0)) {
|
||||
// overflow
|
||||
return Complex(f64).new(maxnum, maxnum);
|
||||
return Complex(f64).init(maxnum, maxnum);
|
||||
}
|
||||
|
||||
const x2 = x * x;
|
||||
var a = 1.0 - x2 - (y * y);
|
||||
if (a == 0.0) {
|
||||
// overflow
|
||||
return Complex(f64).new(maxnum, maxnum);
|
||||
return Complex(f64).init(maxnum, maxnum);
|
||||
}
|
||||
|
||||
var t = 0.5 * math.atan2(f64, 2.0 * x, a);
|
||||
@ -115,18 +115,18 @@ fn atan64(z: Complex(f64)) Complex(f64) {
|
||||
a = x2 + t * t;
|
||||
if (a == 0.0) {
|
||||
// overflow
|
||||
return Complex(f64).new(maxnum, maxnum);
|
||||
return Complex(f64).init(maxnum, maxnum);
|
||||
}
|
||||
|
||||
t = y + 1.0;
|
||||
a = (x2 + (t * t)) / a;
|
||||
return Complex(f64).new(w, 0.25 * math.ln(a));
|
||||
return Complex(f64).init(w, 0.25 * math.ln(a));
|
||||
}
|
||||
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.catan32" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = atan(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f32, c.re, 1.423679, epsilon));
|
||||
@ -134,7 +134,7 @@ test "complex.catan32" {
|
||||
}
|
||||
|
||||
test "complex.catan64" {
|
||||
const a = Complex(f64).new(5, 3);
|
||||
const a = Complex(f64).init(5, 3);
|
||||
const c = atan(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f64, c.re, 1.423679, epsilon));
|
||||
|
||||
@ -12,15 +12,15 @@ const Complex = cmath.Complex;
|
||||
/// Returns the hyperbolic arc-tangent of z.
|
||||
pub fn atanh(z: anytype) Complex(@TypeOf(z.re)) {
|
||||
const T = @TypeOf(z.re);
|
||||
const q = Complex(T).new(-z.im, z.re);
|
||||
const q = Complex(T).init(-z.im, z.re);
|
||||
const r = cmath.atan(q);
|
||||
return Complex(T).new(r.im, -r.re);
|
||||
return Complex(T).init(r.im, -r.re);
|
||||
}
|
||||
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.catanh" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = atanh(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f32, c.re, 0.146947, epsilon));
|
||||
|
||||
@ -12,11 +12,11 @@ const Complex = cmath.Complex;
|
||||
/// Returns the complex conjugate of z.
|
||||
pub fn conj(z: anytype) Complex(@TypeOf(z.re)) {
|
||||
const T = @TypeOf(z.re);
|
||||
return Complex(T).new(z.re, -z.im);
|
||||
return Complex(T).init(z.re, -z.im);
|
||||
}
|
||||
|
||||
test "complex.conj" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = a.conjugate();
|
||||
|
||||
try testing.expect(c.re == 5 and c.im == -3);
|
||||
|
||||
@ -12,14 +12,14 @@ const Complex = cmath.Complex;
|
||||
/// Returns the cosine of z.
|
||||
pub fn cos(z: anytype) Complex(@TypeOf(z.re)) {
|
||||
const T = @TypeOf(z.re);
|
||||
const p = Complex(T).new(-z.im, z.re);
|
||||
const p = Complex(T).init(-z.im, z.re);
|
||||
return cmath.cosh(p);
|
||||
}
|
||||
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.ccos" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = cos(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f32, c.re, 2.855815, epsilon));
|
||||
|
||||
@ -39,55 +39,55 @@ fn cosh32(z: Complex(f32)) Complex(f32) {
|
||||
|
||||
if (ix < 0x7f800000 and iy < 0x7f800000) {
|
||||
if (iy == 0) {
|
||||
return Complex(f32).new(math.cosh(x), y);
|
||||
return Complex(f32).init(math.cosh(x), y);
|
||||
}
|
||||
// small x: normal case
|
||||
if (ix < 0x41100000) {
|
||||
return Complex(f32).new(math.cosh(x) * math.cos(y), math.sinh(x) * math.sin(y));
|
||||
return Complex(f32).init(math.cosh(x) * math.cos(y), math.sinh(x) * math.sin(y));
|
||||
}
|
||||
|
||||
// |x|>= 9, so cosh(x) ~= exp(|x|)
|
||||
if (ix < 0x42b17218) {
|
||||
// x < 88.7: exp(|x|) won't overflow
|
||||
const h = math.exp(math.fabs(x)) * 0.5;
|
||||
return Complex(f32).new(math.copysign(f32, h, x) * math.cos(y), h * math.sin(y));
|
||||
return Complex(f32).init(math.copysign(f32, h, x) * math.cos(y), h * math.sin(y));
|
||||
}
|
||||
// x < 192.7: scale to avoid overflow
|
||||
else if (ix < 0x4340b1e7) {
|
||||
const v = Complex(f32).new(math.fabs(x), y);
|
||||
const v = Complex(f32).init(math.fabs(x), y);
|
||||
const r = ldexp_cexp(v, -1);
|
||||
return Complex(f32).new(r.re, r.im * math.copysign(f32, 1, x));
|
||||
return Complex(f32).init(r.re, r.im * math.copysign(f32, 1, x));
|
||||
}
|
||||
// x >= 192.7: result always overflows
|
||||
else {
|
||||
const h = 0x1p127 * x;
|
||||
return Complex(f32).new(h * h * math.cos(y), h * math.sin(y));
|
||||
return Complex(f32).init(h * h * math.cos(y), h * math.sin(y));
|
||||
}
|
||||
}
|
||||
|
||||
if (ix == 0 and iy >= 0x7f800000) {
|
||||
return Complex(f32).new(y - y, math.copysign(f32, 0, x * (y - y)));
|
||||
return Complex(f32).init(y - y, math.copysign(f32, 0, x * (y - y)));
|
||||
}
|
||||
|
||||
if (iy == 0 and ix >= 0x7f800000) {
|
||||
if (hx & 0x7fffff == 0) {
|
||||
return Complex(f32).new(x * x, math.copysign(f32, 0, x) * y);
|
||||
return Complex(f32).init(x * x, math.copysign(f32, 0, x) * y);
|
||||
}
|
||||
return Complex(f32).new(x, math.copysign(f32, 0, (x + x) * y));
|
||||
return Complex(f32).init(x, math.copysign(f32, 0, (x + x) * y));
|
||||
}
|
||||
|
||||
if (ix < 0x7f800000 and iy >= 0x7f800000) {
|
||||
return Complex(f32).new(y - y, x * (y - y));
|
||||
return Complex(f32).init(y - y, x * (y - y));
|
||||
}
|
||||
|
||||
if (ix >= 0x7f800000 and (hx & 0x7fffff) == 0) {
|
||||
if (iy >= 0x7f800000) {
|
||||
return Complex(f32).new(x * x, x * (y - y));
|
||||
return Complex(f32).init(x * x, x * (y - y));
|
||||
}
|
||||
return Complex(f32).new((x * x) * math.cos(y), x * math.sin(y));
|
||||
return Complex(f32).init((x * x) * math.cos(y), x * math.sin(y));
|
||||
}
|
||||
|
||||
return Complex(f32).new((x * x) * (y - y), (x + x) * (y - y));
|
||||
return Complex(f32).init((x * x) * (y - y), (x + x) * (y - y));
|
||||
}
|
||||
|
||||
fn cosh64(z: Complex(f64)) Complex(f64) {
|
||||
@ -107,61 +107,61 @@ fn cosh64(z: Complex(f64)) Complex(f64) {
|
||||
// nearly non-exceptional case where x, y are finite
|
||||
if (ix < 0x7ff00000 and iy < 0x7ff00000) {
|
||||
if (iy | ly == 0) {
|
||||
return Complex(f64).new(math.cosh(x), x * y);
|
||||
return Complex(f64).init(math.cosh(x), x * y);
|
||||
}
|
||||
// small x: normal case
|
||||
if (ix < 0x40360000) {
|
||||
return Complex(f64).new(math.cosh(x) * math.cos(y), math.sinh(x) * math.sin(y));
|
||||
return Complex(f64).init(math.cosh(x) * math.cos(y), math.sinh(x) * math.sin(y));
|
||||
}
|
||||
|
||||
// |x|>= 22, so cosh(x) ~= exp(|x|)
|
||||
if (ix < 0x40862e42) {
|
||||
// x < 710: exp(|x|) won't overflow
|
||||
const h = math.exp(math.fabs(x)) * 0.5;
|
||||
return Complex(f64).new(h * math.cos(y), math.copysign(f64, h, x) * math.sin(y));
|
||||
return Complex(f64).init(h * math.cos(y), math.copysign(f64, h, x) * math.sin(y));
|
||||
}
|
||||
// x < 1455: scale to avoid overflow
|
||||
else if (ix < 0x4096bbaa) {
|
||||
const v = Complex(f64).new(math.fabs(x), y);
|
||||
const v = Complex(f64).init(math.fabs(x), y);
|
||||
const r = ldexp_cexp(v, -1);
|
||||
return Complex(f64).new(r.re, r.im * math.copysign(f64, 1, x));
|
||||
return Complex(f64).init(r.re, r.im * math.copysign(f64, 1, x));
|
||||
}
|
||||
// x >= 1455: result always overflows
|
||||
else {
|
||||
const h = 0x1p1023;
|
||||
return Complex(f64).new(h * h * math.cos(y), h * math.sin(y));
|
||||
return Complex(f64).init(h * h * math.cos(y), h * math.sin(y));
|
||||
}
|
||||
}
|
||||
|
||||
if (ix | lx == 0 and iy >= 0x7ff00000) {
|
||||
return Complex(f64).new(y - y, math.copysign(f64, 0, x * (y - y)));
|
||||
return Complex(f64).init(y - y, math.copysign(f64, 0, x * (y - y)));
|
||||
}
|
||||
|
||||
if (iy | ly == 0 and ix >= 0x7ff00000) {
|
||||
if ((hx & 0xfffff) | lx == 0) {
|
||||
return Complex(f64).new(x * x, math.copysign(f64, 0, x) * y);
|
||||
return Complex(f64).init(x * x, math.copysign(f64, 0, x) * y);
|
||||
}
|
||||
return Complex(f64).new(x * x, math.copysign(f64, 0, (x + x) * y));
|
||||
return Complex(f64).init(x * x, math.copysign(f64, 0, (x + x) * y));
|
||||
}
|
||||
|
||||
if (ix < 0x7ff00000 and iy >= 0x7ff00000) {
|
||||
return Complex(f64).new(y - y, x * (y - y));
|
||||
return Complex(f64).init(y - y, x * (y - y));
|
||||
}
|
||||
|
||||
if (ix >= 0x7ff00000 and (hx & 0xfffff) | lx == 0) {
|
||||
if (iy >= 0x7ff00000) {
|
||||
return Complex(f64).new(x * x, x * (y - y));
|
||||
return Complex(f64).init(x * x, x * (y - y));
|
||||
}
|
||||
return Complex(f64).new(x * x * math.cos(y), x * math.sin(y));
|
||||
return Complex(f64).init(x * x * math.cos(y), x * math.sin(y));
|
||||
}
|
||||
|
||||
return Complex(f64).new((x * x) * (y - y), (x + x) * (y - y));
|
||||
return Complex(f64).init((x * x) * (y - y), (x + x) * (y - y));
|
||||
}
|
||||
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.ccosh32" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = cosh(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f32, c.re, -73.467300, epsilon));
|
||||
@ -169,7 +169,7 @@ test "complex.ccosh32" {
|
||||
}
|
||||
|
||||
test "complex.ccosh64" {
|
||||
const a = Complex(f64).new(5, 3);
|
||||
const a = Complex(f64).init(5, 3);
|
||||
const c = cosh(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f64, c.re, -73.467300, epsilon));
|
||||
|
||||
@ -38,25 +38,25 @@ fn exp32(z: Complex(f32)) Complex(f32) {
|
||||
const hy = @bitCast(u32, y) & 0x7fffffff;
|
||||
// cexp(x + i0) = exp(x) + i0
|
||||
if (hy == 0) {
|
||||
return Complex(f32).new(math.exp(x), y);
|
||||
return Complex(f32).init(math.exp(x), y);
|
||||
}
|
||||
|
||||
const hx = @bitCast(u32, x);
|
||||
// cexp(0 + iy) = cos(y) + isin(y)
|
||||
if ((hx & 0x7fffffff) == 0) {
|
||||
return Complex(f32).new(math.cos(y), math.sin(y));
|
||||
return Complex(f32).init(math.cos(y), math.sin(y));
|
||||
}
|
||||
|
||||
if (hy >= 0x7f800000) {
|
||||
// cexp(finite|nan +- i inf|nan) = nan + i nan
|
||||
if ((hx & 0x7fffffff) != 0x7f800000) {
|
||||
return Complex(f32).new(y - y, y - y);
|
||||
return Complex(f32).init(y - y, y - y);
|
||||
} // cexp(-inf +- i inf|nan) = 0 + i0
|
||||
else if (hx & 0x80000000 != 0) {
|
||||
return Complex(f32).new(0, 0);
|
||||
return Complex(f32).init(0, 0);
|
||||
} // cexp(+inf +- i inf|nan) = inf + i nan
|
||||
else {
|
||||
return Complex(f32).new(x, y - y);
|
||||
return Complex(f32).init(x, y - y);
|
||||
}
|
||||
}
|
||||
|
||||
@ -69,7 +69,7 @@ fn exp32(z: Complex(f32)) Complex(f32) {
|
||||
// - x = nan
|
||||
else {
|
||||
const exp_x = math.exp(x);
|
||||
return Complex(f32).new(exp_x * math.cos(y), exp_x * math.sin(y));
|
||||
return Complex(f32).init(exp_x * math.cos(y), exp_x * math.sin(y));
|
||||
}
|
||||
}
|
||||
|
||||
@ -86,7 +86,7 @@ fn exp64(z: Complex(f64)) Complex(f64) {
|
||||
|
||||
// cexp(x + i0) = exp(x) + i0
|
||||
if (hy | ly == 0) {
|
||||
return Complex(f64).new(math.exp(x), y);
|
||||
return Complex(f64).init(math.exp(x), y);
|
||||
}
|
||||
|
||||
const fx = @bitCast(u64, x);
|
||||
@ -95,19 +95,19 @@ fn exp64(z: Complex(f64)) Complex(f64) {
|
||||
|
||||
// cexp(0 + iy) = cos(y) + isin(y)
|
||||
if ((hx & 0x7fffffff) | lx == 0) {
|
||||
return Complex(f64).new(math.cos(y), math.sin(y));
|
||||
return Complex(f64).init(math.cos(y), math.sin(y));
|
||||
}
|
||||
|
||||
if (hy >= 0x7ff00000) {
|
||||
// cexp(finite|nan +- i inf|nan) = nan + i nan
|
||||
if (lx != 0 or (hx & 0x7fffffff) != 0x7ff00000) {
|
||||
return Complex(f64).new(y - y, y - y);
|
||||
return Complex(f64).init(y - y, y - y);
|
||||
} // cexp(-inf +- i inf|nan) = 0 + i0
|
||||
else if (hx & 0x80000000 != 0) {
|
||||
return Complex(f64).new(0, 0);
|
||||
return Complex(f64).init(0, 0);
|
||||
} // cexp(+inf +- i inf|nan) = inf + i nan
|
||||
else {
|
||||
return Complex(f64).new(x, y - y);
|
||||
return Complex(f64).init(x, y - y);
|
||||
}
|
||||
}
|
||||
|
||||
@ -120,14 +120,14 @@ fn exp64(z: Complex(f64)) Complex(f64) {
|
||||
// - x = nan
|
||||
else {
|
||||
const exp_x = math.exp(x);
|
||||
return Complex(f64).new(exp_x * math.cos(y), exp_x * math.sin(y));
|
||||
return Complex(f64).init(exp_x * math.cos(y), exp_x * math.sin(y));
|
||||
}
|
||||
}
|
||||
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.cexp32" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = exp(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f32, c.re, -146.927917, epsilon));
|
||||
@ -135,7 +135,7 @@ test "complex.cexp32" {
|
||||
}
|
||||
|
||||
test "complex.cexp64" {
|
||||
const a = Complex(f64).new(5, 3);
|
||||
const a = Complex(f64).init(5, 3);
|
||||
const c = exp(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f64, c.re, -146.927917, epsilon));
|
||||
|
||||
@ -48,7 +48,7 @@ fn ldexp_cexp32(z: Complex(f32), expt: i32) Complex(f32) {
|
||||
const half_expt2 = exptf - half_expt1;
|
||||
const scale2 = @bitCast(f32, (0x7f + half_expt2) << 23);
|
||||
|
||||
return Complex(f32).new(math.cos(z.im) * exp_x * scale1 * scale2, math.sin(z.im) * exp_x * scale1 * scale2);
|
||||
return Complex(f32).init(math.cos(z.im) * exp_x * scale1 * scale2, math.sin(z.im) * exp_x * scale1 * scale2);
|
||||
}
|
||||
|
||||
fn frexp_exp64(x: f64, expt: *i32) f64 {
|
||||
@ -78,7 +78,7 @@ fn ldexp_cexp64(z: Complex(f64), expt: i32) Complex(f64) {
|
||||
const half_expt2 = exptf - half_expt1;
|
||||
const scale2 = @bitCast(f64, (0x3ff + half_expt2) << 20);
|
||||
|
||||
return Complex(f64).new(
|
||||
return Complex(f64).init(
|
||||
math.cos(z.im) * exp_x * scale1 * scale2,
|
||||
math.sin(z.im) * exp_x * scale1 * scale2,
|
||||
);
|
||||
|
||||
@ -15,13 +15,13 @@ pub fn log(z: anytype) Complex(@TypeOf(z.re)) {
|
||||
const r = cmath.abs(z);
|
||||
const phi = cmath.arg(z);
|
||||
|
||||
return Complex(T).new(math.ln(r), phi);
|
||||
return Complex(T).init(math.ln(r), phi);
|
||||
}
|
||||
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.clog" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = log(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f32, c.re, 1.763180, epsilon));
|
||||
|
||||
@ -19,8 +19,8 @@ pub fn pow(comptime T: type, z: T, c: T) T {
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.cpow" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const b = Complex(f32).new(2.3, -1.3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const b = Complex(f32).init(2.3, -1.3);
|
||||
const c = pow(Complex(f32), a, b);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f32, c.re, 58.049110, epsilon));
|
||||
|
||||
@ -14,16 +14,16 @@ pub fn proj(z: anytype) Complex(@TypeOf(z.re)) {
|
||||
const T = @TypeOf(z.re);
|
||||
|
||||
if (math.isInf(z.re) or math.isInf(z.im)) {
|
||||
return Complex(T).new(math.inf(T), math.copysign(T, 0, z.re));
|
||||
return Complex(T).init(math.inf(T), math.copysign(T, 0, z.re));
|
||||
}
|
||||
|
||||
return Complex(T).new(z.re, z.im);
|
||||
return Complex(T).init(z.re, z.im);
|
||||
}
|
||||
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.cproj" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = proj(a);
|
||||
|
||||
try testing.expect(c.re == 5 and c.im == 3);
|
||||
|
||||
@ -12,15 +12,15 @@ const Complex = cmath.Complex;
|
||||
/// Returns the sine of z.
|
||||
pub fn sin(z: anytype) Complex(@TypeOf(z.re)) {
|
||||
const T = @TypeOf(z.re);
|
||||
const p = Complex(T).new(-z.im, z.re);
|
||||
const p = Complex(T).init(-z.im, z.re);
|
||||
const q = cmath.sinh(p);
|
||||
return Complex(T).new(q.im, -q.re);
|
||||
return Complex(T).init(q.im, -q.re);
|
||||
}
|
||||
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.csin" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = sin(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f32, c.re, -9.654126, epsilon));
|
||||
|
||||
@ -39,55 +39,55 @@ fn sinh32(z: Complex(f32)) Complex(f32) {
|
||||
|
||||
if (ix < 0x7f800000 and iy < 0x7f800000) {
|
||||
if (iy == 0) {
|
||||
return Complex(f32).new(math.sinh(x), y);
|
||||
return Complex(f32).init(math.sinh(x), y);
|
||||
}
|
||||
// small x: normal case
|
||||
if (ix < 0x41100000) {
|
||||
return Complex(f32).new(math.sinh(x) * math.cos(y), math.cosh(x) * math.sin(y));
|
||||
return Complex(f32).init(math.sinh(x) * math.cos(y), math.cosh(x) * math.sin(y));
|
||||
}
|
||||
|
||||
// |x|>= 9, so cosh(x) ~= exp(|x|)
|
||||
if (ix < 0x42b17218) {
|
||||
// x < 88.7: exp(|x|) won't overflow
|
||||
const h = math.exp(math.fabs(x)) * 0.5;
|
||||
return Complex(f32).new(math.copysign(f32, h, x) * math.cos(y), h * math.sin(y));
|
||||
return Complex(f32).init(math.copysign(f32, h, x) * math.cos(y), h * math.sin(y));
|
||||
}
|
||||
// x < 192.7: scale to avoid overflow
|
||||
else if (ix < 0x4340b1e7) {
|
||||
const v = Complex(f32).new(math.fabs(x), y);
|
||||
const v = Complex(f32).init(math.fabs(x), y);
|
||||
const r = ldexp_cexp(v, -1);
|
||||
return Complex(f32).new(r.re * math.copysign(f32, 1, x), r.im);
|
||||
return Complex(f32).init(r.re * math.copysign(f32, 1, x), r.im);
|
||||
}
|
||||
// x >= 192.7: result always overflows
|
||||
else {
|
||||
const h = 0x1p127 * x;
|
||||
return Complex(f32).new(h * math.cos(y), h * h * math.sin(y));
|
||||
return Complex(f32).init(h * math.cos(y), h * h * math.sin(y));
|
||||
}
|
||||
}
|
||||
|
||||
if (ix == 0 and iy >= 0x7f800000) {
|
||||
return Complex(f32).new(math.copysign(f32, 0, x * (y - y)), y - y);
|
||||
return Complex(f32).init(math.copysign(f32, 0, x * (y - y)), y - y);
|
||||
}
|
||||
|
||||
if (iy == 0 and ix >= 0x7f800000) {
|
||||
if (hx & 0x7fffff == 0) {
|
||||
return Complex(f32).new(x, y);
|
||||
return Complex(f32).init(x, y);
|
||||
}
|
||||
return Complex(f32).new(x, math.copysign(f32, 0, y));
|
||||
return Complex(f32).init(x, math.copysign(f32, 0, y));
|
||||
}
|
||||
|
||||
if (ix < 0x7f800000 and iy >= 0x7f800000) {
|
||||
return Complex(f32).new(y - y, x * (y - y));
|
||||
return Complex(f32).init(y - y, x * (y - y));
|
||||
}
|
||||
|
||||
if (ix >= 0x7f800000 and (hx & 0x7fffff) == 0) {
|
||||
if (iy >= 0x7f800000) {
|
||||
return Complex(f32).new(x * x, x * (y - y));
|
||||
return Complex(f32).init(x * x, x * (y - y));
|
||||
}
|
||||
return Complex(f32).new(x * math.cos(y), math.inf_f32 * math.sin(y));
|
||||
return Complex(f32).init(x * math.cos(y), math.inf_f32 * math.sin(y));
|
||||
}
|
||||
|
||||
return Complex(f32).new((x * x) * (y - y), (x + x) * (y - y));
|
||||
return Complex(f32).init((x * x) * (y - y), (x + x) * (y - y));
|
||||
}
|
||||
|
||||
fn sinh64(z: Complex(f64)) Complex(f64) {
|
||||
@ -106,61 +106,61 @@ fn sinh64(z: Complex(f64)) Complex(f64) {
|
||||
|
||||
if (ix < 0x7ff00000 and iy < 0x7ff00000) {
|
||||
if (iy | ly == 0) {
|
||||
return Complex(f64).new(math.sinh(x), y);
|
||||
return Complex(f64).init(math.sinh(x), y);
|
||||
}
|
||||
// small x: normal case
|
||||
if (ix < 0x40360000) {
|
||||
return Complex(f64).new(math.sinh(x) * math.cos(y), math.cosh(x) * math.sin(y));
|
||||
return Complex(f64).init(math.sinh(x) * math.cos(y), math.cosh(x) * math.sin(y));
|
||||
}
|
||||
|
||||
// |x|>= 22, so cosh(x) ~= exp(|x|)
|
||||
if (ix < 0x40862e42) {
|
||||
// x < 710: exp(|x|) won't overflow
|
||||
const h = math.exp(math.fabs(x)) * 0.5;
|
||||
return Complex(f64).new(math.copysign(f64, h, x) * math.cos(y), h * math.sin(y));
|
||||
return Complex(f64).init(math.copysign(f64, h, x) * math.cos(y), h * math.sin(y));
|
||||
}
|
||||
// x < 1455: scale to avoid overflow
|
||||
else if (ix < 0x4096bbaa) {
|
||||
const v = Complex(f64).new(math.fabs(x), y);
|
||||
const v = Complex(f64).init(math.fabs(x), y);
|
||||
const r = ldexp_cexp(v, -1);
|
||||
return Complex(f64).new(r.re * math.copysign(f64, 1, x), r.im);
|
||||
return Complex(f64).init(r.re * math.copysign(f64, 1, x), r.im);
|
||||
}
|
||||
// x >= 1455: result always overflows
|
||||
else {
|
||||
const h = 0x1p1023 * x;
|
||||
return Complex(f64).new(h * math.cos(y), h * h * math.sin(y));
|
||||
return Complex(f64).init(h * math.cos(y), h * h * math.sin(y));
|
||||
}
|
||||
}
|
||||
|
||||
if (ix | lx == 0 and iy >= 0x7ff00000) {
|
||||
return Complex(f64).new(math.copysign(f64, 0, x * (y - y)), y - y);
|
||||
return Complex(f64).init(math.copysign(f64, 0, x * (y - y)), y - y);
|
||||
}
|
||||
|
||||
if (iy | ly == 0 and ix >= 0x7ff00000) {
|
||||
if ((hx & 0xfffff) | lx == 0) {
|
||||
return Complex(f64).new(x, y);
|
||||
return Complex(f64).init(x, y);
|
||||
}
|
||||
return Complex(f64).new(x, math.copysign(f64, 0, y));
|
||||
return Complex(f64).init(x, math.copysign(f64, 0, y));
|
||||
}
|
||||
|
||||
if (ix < 0x7ff00000 and iy >= 0x7ff00000) {
|
||||
return Complex(f64).new(y - y, x * (y - y));
|
||||
return Complex(f64).init(y - y, x * (y - y));
|
||||
}
|
||||
|
||||
if (ix >= 0x7ff00000 and (hx & 0xfffff) | lx == 0) {
|
||||
if (iy >= 0x7ff00000) {
|
||||
return Complex(f64).new(x * x, x * (y - y));
|
||||
return Complex(f64).init(x * x, x * (y - y));
|
||||
}
|
||||
return Complex(f64).new(x * math.cos(y), math.inf_f64 * math.sin(y));
|
||||
return Complex(f64).init(x * math.cos(y), math.inf_f64 * math.sin(y));
|
||||
}
|
||||
|
||||
return Complex(f64).new((x * x) * (y - y), (x + x) * (y - y));
|
||||
return Complex(f64).init((x * x) * (y - y), (x + x) * (y - y));
|
||||
}
|
||||
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.csinh32" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = sinh(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f32, c.re, -73.460617, epsilon));
|
||||
@ -168,7 +168,7 @@ test "complex.csinh32" {
|
||||
}
|
||||
|
||||
test "complex.csinh64" {
|
||||
const a = Complex(f64).new(5, 3);
|
||||
const a = Complex(f64).init(5, 3);
|
||||
const c = sinh(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f64, c.re, -73.460617, epsilon));
|
||||
|
||||
@ -32,15 +32,15 @@ fn sqrt32(z: Complex(f32)) Complex(f32) {
|
||||
const y = z.im;
|
||||
|
||||
if (x == 0 and y == 0) {
|
||||
return Complex(f32).new(0, y);
|
||||
return Complex(f32).init(0, y);
|
||||
}
|
||||
if (math.isInf(y)) {
|
||||
return Complex(f32).new(math.inf(f32), y);
|
||||
return Complex(f32).init(math.inf(f32), y);
|
||||
}
|
||||
if (math.isNan(x)) {
|
||||
// raise invalid if y is not nan
|
||||
const t = (y - y) / (y - y);
|
||||
return Complex(f32).new(x, t);
|
||||
return Complex(f32).init(x, t);
|
||||
}
|
||||
if (math.isInf(x)) {
|
||||
// sqrt(inf + i nan) = inf + nan i
|
||||
@ -48,9 +48,9 @@ fn sqrt32(z: Complex(f32)) Complex(f32) {
|
||||
// sqrt(-inf + i nan) = nan +- inf i
|
||||
// sqrt(-inf + iy) = 0 + inf i
|
||||
if (math.signbit(x)) {
|
||||
return Complex(f32).new(math.fabs(x - y), math.copysign(f32, x, y));
|
||||
return Complex(f32).init(math.fabs(x - y), math.copysign(f32, x, y));
|
||||
} else {
|
||||
return Complex(f32).new(x, math.copysign(f32, y - y, y));
|
||||
return Complex(f32).init(x, math.copysign(f32, y - y, y));
|
||||
}
|
||||
}
|
||||
|
||||
@ -62,13 +62,13 @@ fn sqrt32(z: Complex(f32)) Complex(f32) {
|
||||
|
||||
if (dx >= 0) {
|
||||
const t = math.sqrt((dx + math.hypot(f64, dx, dy)) * 0.5);
|
||||
return Complex(f32).new(
|
||||
return Complex(f32).init(
|
||||
@floatCast(f32, t),
|
||||
@floatCast(f32, dy / (2.0 * t)),
|
||||
);
|
||||
} else {
|
||||
const t = math.sqrt((-dx + math.hypot(f64, dx, dy)) * 0.5);
|
||||
return Complex(f32).new(
|
||||
return Complex(f32).init(
|
||||
@floatCast(f32, math.fabs(y) / (2.0 * t)),
|
||||
@floatCast(f32, math.copysign(f64, t, y)),
|
||||
);
|
||||
@ -83,15 +83,15 @@ fn sqrt64(z: Complex(f64)) Complex(f64) {
|
||||
var y = z.im;
|
||||
|
||||
if (x == 0 and y == 0) {
|
||||
return Complex(f64).new(0, y);
|
||||
return Complex(f64).init(0, y);
|
||||
}
|
||||
if (math.isInf(y)) {
|
||||
return Complex(f64).new(math.inf(f64), y);
|
||||
return Complex(f64).init(math.inf(f64), y);
|
||||
}
|
||||
if (math.isNan(x)) {
|
||||
// raise invalid if y is not nan
|
||||
const t = (y - y) / (y - y);
|
||||
return Complex(f64).new(x, t);
|
||||
return Complex(f64).init(x, t);
|
||||
}
|
||||
if (math.isInf(x)) {
|
||||
// sqrt(inf + i nan) = inf + nan i
|
||||
@ -99,9 +99,9 @@ fn sqrt64(z: Complex(f64)) Complex(f64) {
|
||||
// sqrt(-inf + i nan) = nan +- inf i
|
||||
// sqrt(-inf + iy) = 0 + inf i
|
||||
if (math.signbit(x)) {
|
||||
return Complex(f64).new(math.fabs(x - y), math.copysign(f64, x, y));
|
||||
return Complex(f64).init(math.fabs(x - y), math.copysign(f64, x, y));
|
||||
} else {
|
||||
return Complex(f64).new(x, math.copysign(f64, y - y, y));
|
||||
return Complex(f64).init(x, math.copysign(f64, y - y, y));
|
||||
}
|
||||
}
|
||||
|
||||
@ -118,10 +118,10 @@ fn sqrt64(z: Complex(f64)) Complex(f64) {
|
||||
var result: Complex(f64) = undefined;
|
||||
if (x >= 0) {
|
||||
const t = math.sqrt((x + math.hypot(f64, x, y)) * 0.5);
|
||||
result = Complex(f64).new(t, y / (2.0 * t));
|
||||
result = Complex(f64).init(t, y / (2.0 * t));
|
||||
} else {
|
||||
const t = math.sqrt((-x + math.hypot(f64, x, y)) * 0.5);
|
||||
result = Complex(f64).new(math.fabs(y) / (2.0 * t), math.copysign(f64, t, y));
|
||||
result = Complex(f64).init(math.fabs(y) / (2.0 * t), math.copysign(f64, t, y));
|
||||
}
|
||||
|
||||
if (scale) {
|
||||
@ -135,7 +135,7 @@ fn sqrt64(z: Complex(f64)) Complex(f64) {
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.csqrt32" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = sqrt(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f32, c.re, 2.327117, epsilon));
|
||||
@ -143,7 +143,7 @@ test "complex.csqrt32" {
|
||||
}
|
||||
|
||||
test "complex.csqrt64" {
|
||||
const a = Complex(f64).new(5, 3);
|
||||
const a = Complex(f64).init(5, 3);
|
||||
const c = sqrt(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f64, c.re, 2.3271175190399496, epsilon));
|
||||
|
||||
@ -12,15 +12,15 @@ const Complex = cmath.Complex;
|
||||
/// Returns the tanget of z.
|
||||
pub fn tan(z: anytype) Complex(@TypeOf(z.re)) {
|
||||
const T = @TypeOf(z.re);
|
||||
const q = Complex(T).new(-z.im, z.re);
|
||||
const q = Complex(T).init(-z.im, z.re);
|
||||
const r = cmath.tanh(q);
|
||||
return Complex(T).new(r.im, -r.re);
|
||||
return Complex(T).init(r.im, -r.re);
|
||||
}
|
||||
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.ctan" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = tan(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f32, c.re, -0.002708233, epsilon));
|
||||
|
||||
@ -35,22 +35,22 @@ fn tanh32(z: Complex(f32)) Complex(f32) {
|
||||
if (ix >= 0x7f800000) {
|
||||
if (ix & 0x7fffff != 0) {
|
||||
const r = if (y == 0) y else x * y;
|
||||
return Complex(f32).new(x, r);
|
||||
return Complex(f32).init(x, r);
|
||||
}
|
||||
const xx = @bitCast(f32, hx - 0x40000000);
|
||||
const r = if (math.isInf(y)) y else math.sin(y) * math.cos(y);
|
||||
return Complex(f32).new(xx, math.copysign(f32, 0, r));
|
||||
return Complex(f32).init(xx, math.copysign(f32, 0, r));
|
||||
}
|
||||
|
||||
if (!math.isFinite(y)) {
|
||||
const r = if (ix != 0) y - y else x;
|
||||
return Complex(f32).new(r, y - y);
|
||||
return Complex(f32).init(r, y - y);
|
||||
}
|
||||
|
||||
// x >= 11
|
||||
if (ix >= 0x41300000) {
|
||||
const exp_mx = math.exp(-math.fabs(x));
|
||||
return Complex(f32).new(math.copysign(f32, 1, x), 4 * math.sin(y) * math.cos(y) * exp_mx * exp_mx);
|
||||
return Complex(f32).init(math.copysign(f32, 1, x), 4 * math.sin(y) * math.cos(y) * exp_mx * exp_mx);
|
||||
}
|
||||
|
||||
// Kahan's algorithm
|
||||
@ -60,7 +60,7 @@ fn tanh32(z: Complex(f32)) Complex(f32) {
|
||||
const rho = math.sqrt(1 + s * s);
|
||||
const den = 1 + beta * s * s;
|
||||
|
||||
return Complex(f32).new((beta * rho * s) / den, t / den);
|
||||
return Complex(f32).init((beta * rho * s) / den, t / den);
|
||||
}
|
||||
|
||||
fn tanh64(z: Complex(f64)) Complex(f64) {
|
||||
@ -77,23 +77,23 @@ fn tanh64(z: Complex(f64)) Complex(f64) {
|
||||
if (ix >= 0x7ff00000) {
|
||||
if ((ix & 0x7fffff) | lx != 0) {
|
||||
const r = if (y == 0) y else x * y;
|
||||
return Complex(f64).new(x, r);
|
||||
return Complex(f64).init(x, r);
|
||||
}
|
||||
|
||||
const xx = @bitCast(f64, (@as(u64, hx - 0x40000000) << 32) | lx);
|
||||
const r = if (math.isInf(y)) y else math.sin(y) * math.cos(y);
|
||||
return Complex(f64).new(xx, math.copysign(f64, 0, r));
|
||||
return Complex(f64).init(xx, math.copysign(f64, 0, r));
|
||||
}
|
||||
|
||||
if (!math.isFinite(y)) {
|
||||
const r = if (ix != 0) y - y else x;
|
||||
return Complex(f64).new(r, y - y);
|
||||
return Complex(f64).init(r, y - y);
|
||||
}
|
||||
|
||||
// x >= 22
|
||||
if (ix >= 0x40360000) {
|
||||
const exp_mx = math.exp(-math.fabs(x));
|
||||
return Complex(f64).new(math.copysign(f64, 1, x), 4 * math.sin(y) * math.cos(y) * exp_mx * exp_mx);
|
||||
return Complex(f64).init(math.copysign(f64, 1, x), 4 * math.sin(y) * math.cos(y) * exp_mx * exp_mx);
|
||||
}
|
||||
|
||||
// Kahan's algorithm
|
||||
@ -103,13 +103,13 @@ fn tanh64(z: Complex(f64)) Complex(f64) {
|
||||
const rho = math.sqrt(1 + s * s);
|
||||
const den = 1 + beta * s * s;
|
||||
|
||||
return Complex(f64).new((beta * rho * s) / den, t / den);
|
||||
return Complex(f64).init((beta * rho * s) / den, t / den);
|
||||
}
|
||||
|
||||
const epsilon = 0.0001;
|
||||
|
||||
test "complex.ctanh32" {
|
||||
const a = Complex(f32).new(5, 3);
|
||||
const a = Complex(f32).init(5, 3);
|
||||
const c = tanh(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f32, c.re, 0.999913, epsilon));
|
||||
@ -117,7 +117,7 @@ test "complex.ctanh32" {
|
||||
}
|
||||
|
||||
test "complex.ctanh64" {
|
||||
const a = Complex(f64).new(5, 3);
|
||||
const a = Complex(f64).init(5, 3);
|
||||
const c = tanh(a);
|
||||
|
||||
try testing.expect(math.approxEqAbs(f64, c.re, 0.999913, epsilon));
|
||||
|
||||
@ -298,20 +298,6 @@ pub fn isNumber(comptime T: type) bool {
|
||||
};
|
||||
}
|
||||
|
||||
pub fn isIntegerNumber(comptime T: type) bool {
|
||||
return switch (@typeInfo(T)) {
|
||||
.Int, .ComptimeInt => true,
|
||||
else => false,
|
||||
};
|
||||
}
|
||||
|
||||
pub fn isFloatingNumber(comptime T: type) bool {
|
||||
return switch (@typeInfo(T)) {
|
||||
.Float, .ComptimeFloat => true,
|
||||
else => false,
|
||||
};
|
||||
}
|
||||
|
||||
test "std.meta.trait.isNumber" {
|
||||
const NotANumber = struct {
|
||||
number: u8,
|
||||
|
||||
@ -1244,6 +1244,7 @@ pub fn openatZ(dir_fd: fd_t, file_path: [*:0]const u8, flags: u32, mode: mode_t)
|
||||
|
||||
EFAULT => unreachable,
|
||||
EINVAL => unreachable,
|
||||
EBADF => unreachable,
|
||||
EACCES => return error.AccessDenied,
|
||||
EFBIG => return error.FileTooBig,
|
||||
EOVERFLOW => return error.FileTooBig,
|
||||
|
||||
@ -1608,13 +1608,13 @@ test "zig fmt: if-else with comment before else" {
|
||||
\\comptime {
|
||||
\\ // cexp(finite|nan +- i inf|nan) = nan + i nan
|
||||
\\ if ((hx & 0x7fffffff) != 0x7f800000) {
|
||||
\\ return Complex(f32).new(y - y, y - y);
|
||||
\\ return Complex(f32).init(y - y, y - y);
|
||||
\\ } // cexp(-inf +- i inf|nan) = 0 + i0
|
||||
\\ else if (hx & 0x80000000 != 0) {
|
||||
\\ return Complex(f32).new(0, 0);
|
||||
\\ return Complex(f32).init(0, 0);
|
||||
\\ } // cexp(+inf +- i inf|nan) = inf + i nan
|
||||
\\ else {
|
||||
\\ return Complex(f32).new(x, y - y);
|
||||
\\ return Complex(f32).init(x, y - y);
|
||||
\\ }
|
||||
\\}
|
||||
\\
|
||||
@ -2267,16 +2267,16 @@ test "zig fmt: line comment between if block and else keyword" {
|
||||
\\test "aoeu" {
|
||||
\\ // cexp(finite|nan +- i inf|nan) = nan + i nan
|
||||
\\ if ((hx & 0x7fffffff) != 0x7f800000) {
|
||||
\\ return Complex(f32).new(y - y, y - y);
|
||||
\\ return Complex(f32).init(y - y, y - y);
|
||||
\\ }
|
||||
\\ // cexp(-inf +- i inf|nan) = 0 + i0
|
||||
\\ else if (hx & 0x80000000 != 0) {
|
||||
\\ return Complex(f32).new(0, 0);
|
||||
\\ return Complex(f32).init(0, 0);
|
||||
\\ }
|
||||
\\ // cexp(+inf +- i inf|nan) = inf + i nan
|
||||
\\ // another comment
|
||||
\\ else {
|
||||
\\ return Complex(f32).new(x, y - y);
|
||||
\\ return Complex(f32).init(x, y - y);
|
||||
\\ }
|
||||
\\}
|
||||
\\
|
||||
|
||||
@ -4430,7 +4430,7 @@ pub const SwitchProngSrc = union(enum) {
|
||||
log.warn("unable to load {s}: {s}", .{
|
||||
decl.namespace.file_scope.sub_file_path, @errorName(err),
|
||||
});
|
||||
return LazySrcLoc{ .node_offset = 0};
|
||||
return LazySrcLoc{ .node_offset = 0 };
|
||||
};
|
||||
const switch_node = decl.relativeToNodeIndex(switch_node_offset);
|
||||
const main_tokens = tree.nodes.items(.main_token);
|
||||
|
||||
15
src/Sema.zig
15
src/Sema.zig
@ -4229,19 +4229,18 @@ fn resolveSwitchItemVal(
|
||||
switch_prong_src: Module.SwitchProngSrc,
|
||||
range_expand: Module.SwitchProngSrc.RangeExpand,
|
||||
) InnerError!TypedValue {
|
||||
const mod = sema.mod;
|
||||
const item = try sema.resolveInst(item_ref);
|
||||
// We have to avoid the other helper functions here because we cannot construct a LazySrcLoc
|
||||
// because we only have the switch AST node. Only if we know for sure we need to report
|
||||
// a compile error do we resolve the full source locations.
|
||||
if (item.value()) |val| {
|
||||
if (val.isUndef()) {
|
||||
const src = switch_prong_src.resolve(mod, block.src_decl, switch_node_offset, range_expand);
|
||||
const src = switch_prong_src.resolve(sema.gpa, block.src_decl, switch_node_offset, range_expand);
|
||||
return sema.failWithUseOfUndef(block, src);
|
||||
}
|
||||
return TypedValue{ .ty = item.ty, .val = val };
|
||||
}
|
||||
const src = switch_prong_src.resolve(mod, block.src_decl, switch_node_offset, range_expand);
|
||||
const src = switch_prong_src.resolve(sema.gpa, block.src_decl, switch_node_offset, range_expand);
|
||||
return sema.failWithNeededComptime(block, src);
|
||||
}
|
||||
|
||||
@ -4285,7 +4284,7 @@ fn validateSwitchItemEnum(
|
||||
const item_tv = try sema.resolveSwitchItemVal(block, item_ref, src_node_offset, switch_prong_src, .none);
|
||||
const field_index = item_tv.ty.enumTagFieldIndex(item_tv.val) orelse {
|
||||
const msg = msg: {
|
||||
const src = switch_prong_src.resolve(mod, block.src_decl, src_node_offset, .none);
|
||||
const src = switch_prong_src.resolve(sema.gpa, block.src_decl, src_node_offset, .none);
|
||||
const msg = try mod.errMsg(
|
||||
&block.base,
|
||||
src,
|
||||
@ -4317,8 +4316,9 @@ fn validateSwitchDupe(
|
||||
) InnerError!void {
|
||||
const prev_prong_src = maybe_prev_src orelse return;
|
||||
const mod = sema.mod;
|
||||
const src = switch_prong_src.resolve(mod, block.src_decl, src_node_offset, .none);
|
||||
const prev_src = prev_prong_src.resolve(mod, block.src_decl, src_node_offset, .none);
|
||||
const gpa = sema.gpa;
|
||||
const src = switch_prong_src.resolve(gpa, block.src_decl, src_node_offset, .none);
|
||||
const prev_src = prev_prong_src.resolve(gpa, block.src_decl, src_node_offset, .none);
|
||||
const msg = msg: {
|
||||
const msg = try mod.errMsg(
|
||||
&block.base,
|
||||
@ -4355,7 +4355,7 @@ fn validateSwitchItemBool(
|
||||
false_count.* += 1;
|
||||
}
|
||||
if (true_count.* + false_count.* > 2) {
|
||||
const src = switch_prong_src.resolve(mod, block.src_decl, src_node_offset, .none);
|
||||
const src = switch_prong_src.resolve(sema.gpa, block.src_decl, src_node_offset, .none);
|
||||
return sema.mod.fail(&block.base, src, "duplicate switch value", .{});
|
||||
}
|
||||
}
|
||||
@ -7584,4 +7584,3 @@ fn enumFieldSrcLoc(
|
||||
}
|
||||
} else unreachable;
|
||||
}
|
||||
|
||||
|
||||
@ -1,3 +1,4 @@
|
||||
const std = @import("std");
|
||||
pub const builtin = @import("builtin");
|
||||
|
||||
pub const SourceLocation = extern struct {
|
||||
@ -115,7 +116,9 @@ pub const APFloatBaseSemantics = extern enum {
|
||||
};
|
||||
|
||||
pub const APInt = opaque {
|
||||
pub const getLimitedValue = ZigClangAPInt_getLimitedValue;
|
||||
pub fn getLimitedValue(self: *const APInt, comptime T: type) T {
|
||||
return @truncate(T, ZigClangAPInt_getLimitedValue(self, std.math.maxInt(T)));
|
||||
}
|
||||
extern fn ZigClangAPInt_getLimitedValue(*const APInt, limit: u64) u64;
|
||||
};
|
||||
|
||||
|
||||
@ -1571,28 +1571,63 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
|
||||
const lhs = try self.resolveInst(op_lhs);
|
||||
const rhs = try self.resolveInst(op_rhs);
|
||||
|
||||
const lhs_is_register = lhs == .register;
|
||||
const rhs_is_register = rhs == .register;
|
||||
const reuse_lhs = lhs_is_register and self.reuseOperand(inst, 0, lhs);
|
||||
const reuse_rhs = !reuse_lhs and rhs_is_register and self.reuseOperand(inst, 1, rhs);
|
||||
|
||||
// Destination must be a register
|
||||
// LHS must be a register
|
||||
// RHS must be a register
|
||||
var dst_mcv: MCValue = undefined;
|
||||
var lhs_mcv: MCValue = undefined;
|
||||
var rhs_mcv: MCValue = undefined;
|
||||
if (self.reuseOperand(inst, 0, lhs)) {
|
||||
// LHS is the destination
|
||||
lhs_mcv = if (lhs != .register) try self.copyToNewRegister(inst, lhs) else lhs;
|
||||
rhs_mcv = if (rhs != .register) try self.copyToNewRegister(inst, rhs) else rhs;
|
||||
dst_mcv = lhs_mcv;
|
||||
} else if (self.reuseOperand(inst, 1, rhs)) {
|
||||
// RHS is the destination
|
||||
lhs_mcv = if (lhs != .register) try self.copyToNewRegister(inst, lhs) else lhs;
|
||||
rhs_mcv = if (rhs != .register) try self.copyToNewRegister(inst, rhs) else rhs;
|
||||
dst_mcv = rhs_mcv;
|
||||
var lhs_mcv: MCValue = lhs;
|
||||
var rhs_mcv: MCValue = rhs;
|
||||
|
||||
// Allocate registers for operands and/or destination
|
||||
const branch = &self.branch_stack.items[self.branch_stack.items.len - 1];
|
||||
if (reuse_lhs) {
|
||||
// Allocate 0 or 1 registers
|
||||
if (!rhs_is_register) {
|
||||
rhs_mcv = MCValue{ .register = try self.register_manager.allocReg(op_rhs, &.{lhs.register}) };
|
||||
branch.inst_table.putAssumeCapacity(op_rhs, rhs_mcv);
|
||||
}
|
||||
dst_mcv = lhs;
|
||||
} else if (reuse_rhs) {
|
||||
// Allocate 0 or 1 registers
|
||||
if (!lhs_is_register) {
|
||||
lhs_mcv = MCValue{ .register = try self.register_manager.allocReg(op_lhs, &.{rhs.register}) };
|
||||
branch.inst_table.putAssumeCapacity(op_lhs, lhs_mcv);
|
||||
}
|
||||
dst_mcv = rhs;
|
||||
} else {
|
||||
// TODO save 1 copy instruction by directly allocating the destination register
|
||||
// LHS is the destination
|
||||
lhs_mcv = try self.copyToNewRegister(inst, lhs);
|
||||
rhs_mcv = if (rhs != .register) try self.copyToNewRegister(inst, rhs) else rhs;
|
||||
dst_mcv = lhs_mcv;
|
||||
// Allocate 1 or 2 registers
|
||||
if (lhs_is_register and rhs_is_register) {
|
||||
dst_mcv = MCValue{ .register = try self.register_manager.allocReg(inst, &.{ lhs.register, rhs.register }) };
|
||||
} else if (lhs_is_register) {
|
||||
// Move RHS to register
|
||||
dst_mcv = MCValue{ .register = try self.register_manager.allocReg(inst, &.{lhs.register}) };
|
||||
rhs_mcv = dst_mcv;
|
||||
} else if (rhs_is_register) {
|
||||
// Move LHS to register
|
||||
dst_mcv = MCValue{ .register = try self.register_manager.allocReg(inst, &.{rhs.register}) };
|
||||
lhs_mcv = dst_mcv;
|
||||
} else {
|
||||
// Move LHS and RHS to register
|
||||
const regs = try self.register_manager.allocRegs(2, .{ inst, op_rhs }, &.{});
|
||||
lhs_mcv = MCValue{ .register = regs[0] };
|
||||
rhs_mcv = MCValue{ .register = regs[1] };
|
||||
dst_mcv = lhs_mcv;
|
||||
|
||||
branch.inst_table.putAssumeCapacity(op_rhs, rhs_mcv);
|
||||
}
|
||||
}
|
||||
|
||||
// Move the operands to the newly allocated registers
|
||||
if (!lhs_is_register) {
|
||||
try self.genSetReg(op_lhs.src, op_lhs.ty, lhs_mcv.register, lhs);
|
||||
}
|
||||
if (!rhs_is_register) {
|
||||
try self.genSetReg(op_rhs.src, op_rhs.ty, rhs_mcv.register, rhs);
|
||||
}
|
||||
|
||||
writeInt(u32, try self.code.addManyAsArray(4), Instruction.mul(.al, dst_mcv.register, lhs_mcv.register, rhs_mcv.register).toU32());
|
||||
|
||||
@ -1,44 +1,50 @@
|
||||
const std = @import("std");
|
||||
const Allocator = std.mem.Allocator;
|
||||
const Target = std.Target;
|
||||
const log = std.log.scoped(.codegen);
|
||||
|
||||
const spec = @import("spirv/spec.zig");
|
||||
const Opcode = spec.Opcode;
|
||||
|
||||
const Module = @import("../Module.zig");
|
||||
const Decl = Module.Decl;
|
||||
const Type = @import("../type.zig").Type;
|
||||
const Value = @import("../value.zig").Value;
|
||||
const LazySrcLoc = Module.LazySrcLoc;
|
||||
const ir = @import("../ir.zig");
|
||||
const Inst = ir.Inst;
|
||||
|
||||
pub const TypeMap = std.HashMap(Type, u32, Type.hash, Type.eql, std.hash_map.default_max_load_percentage);
|
||||
pub const ValueMap = std.AutoHashMap(*Inst, u32);
|
||||
|
||||
pub fn writeInstruction(code: *std.ArrayList(u32), instr: spec.Opcode, args: []const u32) !void {
|
||||
const word_count = @intCast(u32, args.len + 1);
|
||||
try code.append((word_count << 16) | @enumToInt(instr));
|
||||
pub fn writeOpcode(code: *std.ArrayList(u32), opcode: Opcode, arg_count: u32) !void {
|
||||
const word_count = arg_count + 1;
|
||||
try code.append((word_count << 16) | @enumToInt(opcode));
|
||||
}
|
||||
|
||||
pub fn writeInstruction(code: *std.ArrayList(u32), opcode: Opcode, args: []const u32) !void {
|
||||
try writeOpcode(code, opcode, @intCast(u32, args.len));
|
||||
try code.appendSlice(args);
|
||||
}
|
||||
|
||||
/// This structure represents a SPIR-V binary module being compiled, and keeps track of relevant information
|
||||
/// such as code for the different logical sections, and the next result-id.
|
||||
pub const SPIRVModule = struct {
|
||||
next_result_id: u32 = 0,
|
||||
|
||||
target: std.Target,
|
||||
|
||||
types: TypeMap,
|
||||
|
||||
types_and_globals: std.ArrayList(u32),
|
||||
next_result_id: u32,
|
||||
types_globals_constants: std.ArrayList(u32),
|
||||
fn_decls: std.ArrayList(u32),
|
||||
|
||||
pub fn init(target: std.Target, allocator: *Allocator) SPIRVModule {
|
||||
pub fn init(allocator: *Allocator) SPIRVModule {
|
||||
return .{
|
||||
.target = target,
|
||||
.types = TypeMap.init(allocator),
|
||||
.types_and_globals = std.ArrayList(u32).init(allocator),
|
||||
.next_result_id = 1, // 0 is an invalid SPIR-V result ID.
|
||||
.types_globals_constants = std.ArrayList(u32).init(allocator),
|
||||
.fn_decls = std.ArrayList(u32).init(allocator),
|
||||
};
|
||||
}
|
||||
|
||||
pub fn deinit(self: *SPIRVModule) void {
|
||||
self.types_globals_constants.deinit();
|
||||
self.fn_decls.deinit();
|
||||
self.types_and_globals.deinit();
|
||||
self.types.deinit();
|
||||
self.* = undefined;
|
||||
}
|
||||
|
||||
pub fn allocResultId(self: *SPIRVModule) u32 {
|
||||
@ -49,31 +55,310 @@ pub const SPIRVModule = struct {
|
||||
pub fn resultIdBound(self: *SPIRVModule) u32 {
|
||||
return self.next_result_id;
|
||||
}
|
||||
};
|
||||
|
||||
pub fn getOrGenType(self: *SPIRVModule, t: Type) !u32 {
|
||||
/// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that.
|
||||
pub const DeclGen = struct {
|
||||
module: *Module,
|
||||
spv: *SPIRVModule,
|
||||
|
||||
args: std.ArrayList(u32),
|
||||
next_arg_index: u32,
|
||||
|
||||
types: TypeMap,
|
||||
values: ValueMap,
|
||||
|
||||
decl: *Decl,
|
||||
error_msg: ?*Module.ErrorMsg,
|
||||
|
||||
const Error = error{ AnalysisFail, OutOfMemory };
|
||||
|
||||
/// This structure is used to return information about a type typically used for arithmetic operations.
|
||||
/// These types may either be integers, floats, or a vector of these. Most scalar operations also work on vectors,
|
||||
/// so we can easily represent those as arithmetic types.
|
||||
/// If the type is a scalar, 'inner type' refers to the scalar type. Otherwise, if its a vector, it refers
|
||||
/// to the vector's element type.
|
||||
const ArithmeticTypeInfo = struct {
|
||||
/// A classification of the inner type.
|
||||
const Class = enum {
|
||||
/// A boolean.
|
||||
bool,
|
||||
|
||||
/// A regular, **native**, integer.
|
||||
/// This is only returned when the backend supports this int as a native type (when
|
||||
/// the relevant capability is enabled).
|
||||
integer,
|
||||
|
||||
/// A regular float. These are all required to be natively supported. Floating points for
|
||||
/// which the relevant capability is not enabled are not emulated.
|
||||
float,
|
||||
|
||||
/// An integer of a 'strange' size (which' bit size is not the same as its backing type. **Note**: this
|
||||
/// may **also** include power-of-2 integers for which the relevant capability is not enabled), but still
|
||||
/// within the limits of the largest natively supported integer type.
|
||||
strange_integer,
|
||||
|
||||
/// An integer with more bits than the largest natively supported integer type.
|
||||
composite_integer,
|
||||
};
|
||||
|
||||
/// The number of bits in the inner type.
|
||||
/// Note: this is the actual number of bits of the type, not the size of the backing integer.
|
||||
bits: u16,
|
||||
|
||||
/// Whether the type is a vector.
|
||||
is_vector: bool,
|
||||
|
||||
/// Whether the inner type is signed. Only relevant for integers.
|
||||
signedness: std.builtin.Signedness,
|
||||
|
||||
/// A classification of the inner type. These scenarios
|
||||
/// will all have to be handled slightly different.
|
||||
class: Class,
|
||||
};
|
||||
|
||||
fn fail(self: *DeclGen, src: LazySrcLoc, comptime format: []const u8, args: anytype) Error {
|
||||
@setCold(true);
|
||||
const src_loc = src.toSrcLocWithDecl(self.decl);
|
||||
self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, format, args);
|
||||
return error.AnalysisFail;
|
||||
}
|
||||
|
||||
fn resolve(self: *DeclGen, inst: *Inst) !u32 {
|
||||
if (inst.value()) |val| {
|
||||
return self.genConstant(inst.ty, val);
|
||||
}
|
||||
|
||||
return self.values.get(inst).?; // Instruction does not dominate all uses!
|
||||
}
|
||||
|
||||
/// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need
|
||||
/// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign
|
||||
/// included), the width of the underlying type which represents it, given the enabled features for the current target.
|
||||
/// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using
|
||||
/// that size. In this case, multiple elements of the largest type should be used.
|
||||
/// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits.
|
||||
/// The result is valid to be used with OpTypeInt.
|
||||
/// TODO: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
|
||||
/// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers).
|
||||
/// TODO: Should the result of this function be cached?
|
||||
fn backingIntBits(self: *DeclGen, bits: u16) ?u16 {
|
||||
const target = self.module.getTarget();
|
||||
|
||||
// TODO: Figure out what to do with u0/i0.
|
||||
std.debug.assert(bits != 0);
|
||||
|
||||
// 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively.
|
||||
// 32-bit integers are always supported (see spec, 2.16.1, Data rules).
|
||||
const ints = [_]struct { bits: u16, feature: ?Target.spirv.Feature }{
|
||||
.{ .bits = 8, .feature = .Int8 },
|
||||
.{ .bits = 16, .feature = .Int16 },
|
||||
.{ .bits = 32, .feature = null },
|
||||
.{ .bits = 64, .feature = .Int64 },
|
||||
};
|
||||
|
||||
for (ints) |int| {
|
||||
const has_feature = if (int.feature) |feature|
|
||||
Target.spirv.featureSetHas(target.cpu.features, feature)
|
||||
else
|
||||
true;
|
||||
|
||||
if (bits <= int.bits and has_feature) {
|
||||
return int.bits;
|
||||
}
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
/// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if
|
||||
/// the Int64 capability is enabled).
|
||||
/// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
|
||||
/// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there
|
||||
/// is no way of knowing whether those are actually supported.
|
||||
/// TODO: Maybe this should be cached?
|
||||
fn largestSupportedIntBits(self: *DeclGen) u16 {
|
||||
const target = self.module.getTarget();
|
||||
return if (Target.spirv.featureSetHas(target.cpu.features, .Int64))
|
||||
64
|
||||
else
|
||||
32;
|
||||
}
|
||||
|
||||
/// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by
|
||||
/// arrays of largestSupportedIntBits().
|
||||
/// Asserts `ty` is an integer.
|
||||
fn isCompositeInt(self: *DeclGen, ty: Type) bool {
|
||||
return self.backingIntBits(ty) == null;
|
||||
}
|
||||
|
||||
fn arithmeticTypeInfo(self: *DeclGen, ty: Type) !ArithmeticTypeInfo {
|
||||
const target = self.module.getTarget();
|
||||
|
||||
return switch (ty.zigTypeTag()) {
|
||||
.Bool => ArithmeticTypeInfo{
|
||||
.bits = 1, // Doesn't matter for this class.
|
||||
.is_vector = false,
|
||||
.signedness = .unsigned, // Technically, but doesn't matter for this class.
|
||||
.class = .bool,
|
||||
},
|
||||
.Float => ArithmeticTypeInfo{
|
||||
.bits = ty.floatBits(target),
|
||||
.is_vector = false,
|
||||
.signedness = .signed, // Technically, but doesn't matter for this class.
|
||||
.class = .float,
|
||||
},
|
||||
.Int => blk: {
|
||||
const int_info = ty.intInfo(target);
|
||||
// TODO: Maybe it's useful to also return this value.
|
||||
const maybe_backing_bits = self.backingIntBits(int_info.bits);
|
||||
break :blk ArithmeticTypeInfo{ .bits = int_info.bits, .is_vector = false, .signedness = int_info.signedness, .class = if (maybe_backing_bits) |backing_bits|
|
||||
if (backing_bits == int_info.bits)
|
||||
ArithmeticTypeInfo.Class.integer
|
||||
else
|
||||
ArithmeticTypeInfo.Class.strange_integer
|
||||
else
|
||||
.composite_integer };
|
||||
},
|
||||
// As of yet, there is no vector support in the self-hosted compiler.
|
||||
.Vector => self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement arithmeticTypeInfo for Vector", .{}),
|
||||
// TODO: For which types is this the case?
|
||||
else => self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement arithmeticTypeInfo for {}", .{ty}),
|
||||
};
|
||||
}
|
||||
|
||||
/// Generate a constant representing `val`.
|
||||
/// TODO: Deduplication?
|
||||
fn genConstant(self: *DeclGen, ty: Type, val: Value) Error!u32 {
|
||||
const code = &self.spv.types_globals_constants;
|
||||
const result_id = self.spv.allocResultId();
|
||||
const result_type_id = try self.getOrGenType(ty);
|
||||
|
||||
if (val.isUndef()) {
|
||||
try writeInstruction(code, .OpUndef, &[_]u32{ result_type_id, result_id });
|
||||
return result_id;
|
||||
}
|
||||
|
||||
switch (ty.zigTypeTag()) {
|
||||
.Bool => {
|
||||
const opcode: Opcode = if (val.toBool()) .OpConstantTrue else .OpConstantFalse;
|
||||
try writeInstruction(code, opcode, &[_]u32{ result_type_id, result_id });
|
||||
},
|
||||
.Float => {
|
||||
// At this point we are guaranteed that the target floating point type is supported, otherwise the function
|
||||
// would have exited at getOrGenType(ty).
|
||||
|
||||
// f16 and f32 require one word of storage. f64 requires 2, low-order first.
|
||||
|
||||
switch (val.tag()) {
|
||||
.float_16 => try writeInstruction(code, .OpConstant, &[_]u32{ result_type_id, result_id, @bitCast(u16, val.castTag(.float_16).?.data) }),
|
||||
.float_32 => try writeInstruction(code, .OpConstant, &[_]u32{ result_type_id, result_id, @bitCast(u32, val.castTag(.float_32).?.data) }),
|
||||
.float_64 => {
|
||||
const float_bits = @bitCast(u64, val.castTag(.float_64).?.data);
|
||||
try writeInstruction(code, .OpConstant, &[_]u32{
|
||||
result_type_id,
|
||||
result_id,
|
||||
@truncate(u32, float_bits),
|
||||
@truncate(u32, float_bits >> 32),
|
||||
});
|
||||
},
|
||||
.float_128 => unreachable, // Filtered out in the call to getOrGenType.
|
||||
// TODO: What tags do we need to handle here anyway?
|
||||
else => return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: float constant generation of value {s}\n", .{val.tag()}),
|
||||
}
|
||||
},
|
||||
else => return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: constant generation of type {s}\n", .{ty.zigTypeTag()}),
|
||||
}
|
||||
|
||||
return result_id;
|
||||
}
|
||||
|
||||
fn getOrGenType(self: *DeclGen, ty: Type) Error!u32 {
|
||||
// We can't use getOrPut here so we can recursively generate types.
|
||||
if (self.types.get(t)) |already_generated| {
|
||||
if (self.types.get(ty)) |already_generated| {
|
||||
return already_generated;
|
||||
}
|
||||
|
||||
const result = self.allocResultId();
|
||||
const target = self.module.getTarget();
|
||||
const code = &self.spv.types_globals_constants;
|
||||
const result_id = self.spv.allocResultId();
|
||||
|
||||
switch (t.zigTypeTag()) {
|
||||
.Void => try writeInstruction(&self.types_and_globals, .OpTypeVoid, &[_]u32{ result }),
|
||||
.Bool => try writeInstruction(&self.types_and_globals, .OpTypeBool, &[_]u32{ result }),
|
||||
switch (ty.zigTypeTag()) {
|
||||
.Void => try writeInstruction(code, .OpTypeVoid, &[_]u32{result_id}),
|
||||
.Bool => try writeInstruction(code, .OpTypeBool, &[_]u32{result_id}),
|
||||
.Int => {
|
||||
const int_info = t.intInfo(self.target);
|
||||
try writeInstruction(&self.types_and_globals, .OpTypeInt, &[_]u32{
|
||||
result,
|
||||
int_info.bits,
|
||||
const int_info = ty.intInfo(target);
|
||||
const backing_bits = self.backingIntBits(int_info.bits) orelse {
|
||||
// Integers too big for any native type are represented as "composite integers": An array of largestSupportedIntBits.
|
||||
return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement composite ints {}", .{ty});
|
||||
};
|
||||
|
||||
// TODO: If backing_bits != int_info.bits, a duplicate type might be generated here.
|
||||
try writeInstruction(code, .OpTypeInt, &[_]u32{
|
||||
result_id,
|
||||
backing_bits,
|
||||
switch (int_info.signedness) {
|
||||
.unsigned => 0,
|
||||
.signed => 1,
|
||||
},
|
||||
});
|
||||
},
|
||||
// TODO: Verify that floatBits() will be correct.
|
||||
.Float => try writeInstruction(&self.types_and_globals, .OpTypeFloat, &[_]u32{ result, t.floatBits(self.target) }),
|
||||
.Float => {
|
||||
// We can (and want) not really emulate floating points with other floating point types like with the integer types,
|
||||
// so if the float is not supported, just return an error.
|
||||
const bits = ty.floatBits(target);
|
||||
const supported = switch (bits) {
|
||||
16 => Target.spirv.featureSetHas(target.cpu.features, .Float16),
|
||||
// 32-bit floats are always supported (see spec, 2.16.1, Data rules).
|
||||
32 => true,
|
||||
64 => Target.spirv.featureSetHas(target.cpu.features, .Float64),
|
||||
else => false,
|
||||
};
|
||||
|
||||
if (!supported) {
|
||||
return self.fail(.{ .node_offset = 0 }, "Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits});
|
||||
}
|
||||
|
||||
try writeInstruction(code, .OpTypeFloat, &[_]u32{ result_id, bits });
|
||||
},
|
||||
.Fn => {
|
||||
// We only support zig-calling-convention functions, no varargs.
|
||||
if (ty.fnCallingConvention() != .Unspecified)
|
||||
return self.fail(.{ .node_offset = 0 }, "Unsupported calling convention for SPIR-V", .{});
|
||||
if (ty.fnIsVarArgs())
|
||||
return self.fail(.{ .node_offset = 0 }, "VarArgs unsupported for SPIR-V", .{});
|
||||
|
||||
// In order to avoid a temporary here, first generate all the required types and then simply look them up
|
||||
// when generating the function type.
|
||||
const params = ty.fnParamLen();
|
||||
var i: usize = 0;
|
||||
while (i < params) : (i += 1) {
|
||||
_ = try self.getOrGenType(ty.fnParamType(i));
|
||||
}
|
||||
|
||||
const return_type_id = try self.getOrGenType(ty.fnReturnType());
|
||||
|
||||
// result id + result type id + parameter type ids.
|
||||
try writeOpcode(code, .OpTypeFunction, 2 + @intCast(u32, ty.fnParamLen()));
|
||||
try code.appendSlice(&.{ result_id, return_type_id });
|
||||
|
||||
i = 0;
|
||||
while (i < params) : (i += 1) {
|
||||
const param_type_id = self.types.get(ty.fnParamType(i)).?;
|
||||
try code.append(param_type_id);
|
||||
}
|
||||
},
|
||||
.Vector => {
|
||||
// Although not 100% the same, Zig vectors map quite neatly to SPIR-V vectors (including many integer and float operations
|
||||
// which work on them), so simply use those.
|
||||
// Note: SPIR-V vectors only support bools, ints and floats, so pointer vectors need to be supported another way.
|
||||
// "composite integers" (larger than the largest supported native type) can probably be represented by an array of vectors.
|
||||
// TODO: The SPIR-V spec mentions that vector sizes may be quite restricted! look into which we can use, and whether OpTypeVector
|
||||
// is adequate at all for this.
|
||||
|
||||
// TODO: Vectors are not yet supported by the self-hosted compiler itself it seems.
|
||||
return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement type Vector", .{});
|
||||
},
|
||||
.Null,
|
||||
.Undefined,
|
||||
.EnumLiteral,
|
||||
@ -84,21 +369,197 @@ pub const SPIRVModule = struct {
|
||||
|
||||
.BoundFn => unreachable, // this type will be deleted from the language.
|
||||
|
||||
else => return error.TODO,
|
||||
else => |tag| return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement type {}s", .{tag}),
|
||||
}
|
||||
|
||||
try self.types.put(t, result);
|
||||
return result;
|
||||
try self.types.putNoClobber(ty, result_id);
|
||||
return result_id;
|
||||
}
|
||||
|
||||
pub fn gen(self: *SPIRVModule, decl: *Decl) !void {
|
||||
switch (decl.ty.zigTypeTag()) {
|
||||
.Fn => {
|
||||
log.debug("Generating code for function '{s}'", .{ std.mem.spanZ(decl.name) });
|
||||
pub fn gen(self: *DeclGen) !void {
|
||||
const decl = self.decl;
|
||||
const result_id = decl.fn_link.spirv.id;
|
||||
|
||||
_ = try self.getOrGenType(decl.ty.fnReturnType());
|
||||
},
|
||||
else => return error.TODO,
|
||||
if (decl.val.castTag(.function)) |func_payload| {
|
||||
std.debug.assert(decl.ty.zigTypeTag() == .Fn);
|
||||
const prototype_id = try self.getOrGenType(decl.ty);
|
||||
try writeInstruction(&self.spv.fn_decls, .OpFunction, &[_]u32{
|
||||
self.types.get(decl.ty.fnReturnType()).?, // This type should be generated along with the prototype.
|
||||
result_id,
|
||||
@bitCast(u32, spec.FunctionControl{}), // TODO: We can set inline here if the type requires it.
|
||||
prototype_id,
|
||||
});
|
||||
|
||||
const params = decl.ty.fnParamLen();
|
||||
var i: usize = 0;
|
||||
|
||||
try self.args.ensureCapacity(params);
|
||||
while (i < params) : (i += 1) {
|
||||
const param_type_id = self.types.get(decl.ty.fnParamType(i)).?;
|
||||
const arg_result_id = self.spv.allocResultId();
|
||||
try writeInstruction(&self.spv.fn_decls, .OpFunctionParameter, &[_]u32{ param_type_id, arg_result_id });
|
||||
self.args.appendAssumeCapacity(arg_result_id);
|
||||
}
|
||||
|
||||
// TODO: This could probably be done in a better way...
|
||||
const root_block_id = self.spv.allocResultId();
|
||||
_ = try writeInstruction(&self.spv.fn_decls, .OpLabel, &[_]u32{root_block_id});
|
||||
try self.genBody(func_payload.data.body);
|
||||
|
||||
try writeInstruction(&self.spv.fn_decls, .OpFunctionEnd, &[_]u32{});
|
||||
} else {
|
||||
return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: generate decl type {}", .{decl.ty.zigTypeTag()});
|
||||
}
|
||||
}
|
||||
|
||||
fn genBody(self: *DeclGen, body: ir.Body) !void {
|
||||
for (body.instructions) |inst| {
|
||||
const maybe_result_id = try self.genInst(inst);
|
||||
if (maybe_result_id) |result_id|
|
||||
try self.values.putNoClobber(inst, result_id);
|
||||
}
|
||||
}
|
||||
|
||||
fn genInst(self: *DeclGen, inst: *Inst) !?u32 {
|
||||
return switch (inst.tag) {
|
||||
.add, .addwrap => try self.genBinOp(inst.castTag(.add).?),
|
||||
.sub, .subwrap => try self.genBinOp(inst.castTag(.sub).?),
|
||||
.mul, .mulwrap => try self.genBinOp(inst.castTag(.mul).?),
|
||||
.div => try self.genBinOp(inst.castTag(.div).?),
|
||||
.bit_and => try self.genBinOp(inst.castTag(.bit_and).?),
|
||||
.bit_or => try self.genBinOp(inst.castTag(.bit_or).?),
|
||||
.xor => try self.genBinOp(inst.castTag(.xor).?),
|
||||
.cmp_eq => try self.genBinOp(inst.castTag(.cmp_eq).?),
|
||||
.cmp_neq => try self.genBinOp(inst.castTag(.cmp_neq).?),
|
||||
.cmp_gt => try self.genBinOp(inst.castTag(.cmp_gt).?),
|
||||
.cmp_gte => try self.genBinOp(inst.castTag(.cmp_gte).?),
|
||||
.cmp_lt => try self.genBinOp(inst.castTag(.cmp_lt).?),
|
||||
.cmp_lte => try self.genBinOp(inst.castTag(.cmp_lte).?),
|
||||
.bool_and => try self.genBinOp(inst.castTag(.bool_and).?),
|
||||
.bool_or => try self.genBinOp(inst.castTag(.bool_or).?),
|
||||
.not => try self.genUnOp(inst.castTag(.not).?),
|
||||
.arg => self.genArg(),
|
||||
// TODO: Breakpoints won't be supported in SPIR-V, but the compiler seems to insert them
|
||||
// throughout the IR.
|
||||
.breakpoint => null,
|
||||
.dbg_stmt => null,
|
||||
.ret => self.genRet(inst.castTag(.ret).?),
|
||||
.retvoid => self.genRetVoid(),
|
||||
.unreach => self.genUnreach(),
|
||||
else => self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement inst {}", .{inst.tag}),
|
||||
};
|
||||
}
|
||||
|
||||
fn genBinOp(self: *DeclGen, inst: *Inst.BinOp) !u32 {
|
||||
// TODO: Will lhs and rhs have the same type?
|
||||
const lhs_id = try self.resolve(inst.lhs);
|
||||
const rhs_id = try self.resolve(inst.rhs);
|
||||
|
||||
const result_id = self.spv.allocResultId();
|
||||
const result_type_id = try self.getOrGenType(inst.base.ty);
|
||||
|
||||
// TODO: Is the result the same as the argument types?
|
||||
// This is supposed to be the case for SPIR-V.
|
||||
std.debug.assert(inst.rhs.ty.eql(inst.lhs.ty));
|
||||
std.debug.assert(inst.base.ty.tag() == .bool or inst.base.ty.eql(inst.lhs.ty));
|
||||
|
||||
// Binary operations are generally applicable to both scalar and vector operations in SPIR-V, but int and float
|
||||
// versions of operations require different opcodes.
|
||||
// For operations which produce bools, the information of inst.base.ty is not useful, so just pick either operand
|
||||
// instead.
|
||||
const info = try self.arithmeticTypeInfo(inst.lhs.ty);
|
||||
|
||||
if (info.class == .composite_integer)
|
||||
return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: binary operations for composite integers", .{});
|
||||
|
||||
const is_bool = info.class == .bool;
|
||||
const is_float = info.class == .float;
|
||||
const is_signed = info.signedness == .signed;
|
||||
// **Note**: All these operations must be valid for vectors of floats, integers and bools as well!
|
||||
// For floating points, we generally want ordered operations (which return false if either operand is nan).
|
||||
const opcode = switch (inst.base.tag) {
|
||||
// The regular integer operations are all defined for wrapping. Since theyre only relevant for integers,
|
||||
// we can just switch on both cases here.
|
||||
.add, .addwrap => if (is_float) Opcode.OpFAdd else Opcode.OpIAdd,
|
||||
.sub, .subwrap => if (is_float) Opcode.OpFSub else Opcode.OpISub,
|
||||
.mul, .mulwrap => if (is_float) Opcode.OpFMul else Opcode.OpIMul,
|
||||
// TODO: Trap if divisor is 0?
|
||||
// TODO: Figure out of OpSDiv for unsigned/OpUDiv for signed does anything useful.
|
||||
// => Those are probably for divTrunc and divFloor, though the compiler does not yet generate those.
|
||||
// => TODO: Figure out how those work on the SPIR-V side.
|
||||
// => TODO: Test these.
|
||||
.div => if (is_float) Opcode.OpFDiv else if (is_signed) Opcode.OpSDiv else Opcode.OpUDiv,
|
||||
// Only integer versions for these.
|
||||
.bit_and => Opcode.OpBitwiseAnd,
|
||||
.bit_or => Opcode.OpBitwiseOr,
|
||||
.xor => Opcode.OpBitwiseXor,
|
||||
// Int/bool/float -> bool operations.
|
||||
.cmp_eq => if (is_float) Opcode.OpFOrdEqual else if (is_bool) Opcode.OpLogicalEqual else Opcode.OpIEqual,
|
||||
.cmp_neq => if (is_float) Opcode.OpFOrdNotEqual else if (is_bool) Opcode.OpLogicalNotEqual else Opcode.OpINotEqual,
|
||||
// Int/float -> bool operations.
|
||||
// TODO: Verify that these OpFOrd type operations produce the right value.
|
||||
// TODO: Is there a more fundamental difference between OpU and OpS operations here than just the type?
|
||||
.cmp_gt => if (is_float) Opcode.OpFOrdGreaterThan else if (is_signed) Opcode.OpSGreaterThan else Opcode.OpUGreaterThan,
|
||||
.cmp_gte => if (is_float) Opcode.OpFOrdGreaterThanEqual else if (is_signed) Opcode.OpSGreaterThanEqual else Opcode.OpUGreaterThanEqual,
|
||||
.cmp_lt => if (is_float) Opcode.OpFOrdLessThan else if (is_signed) Opcode.OpSLessThan else Opcode.OpULessThan,
|
||||
.cmp_lte => if (is_float) Opcode.OpFOrdLessThanEqual else if (is_signed) Opcode.OpSLessThanEqual else Opcode.OpULessThanEqual,
|
||||
// Bool -> bool operations.
|
||||
.bool_and => Opcode.OpLogicalAnd,
|
||||
.bool_or => Opcode.OpLogicalOr,
|
||||
else => unreachable,
|
||||
};
|
||||
|
||||
try writeInstruction(&self.spv.fn_decls, opcode, &[_]u32{ result_type_id, result_id, lhs_id, rhs_id });
|
||||
|
||||
// TODO: Trap on overflow? Probably going to be annoying.
|
||||
// TODO: Look into SPV_KHR_no_integer_wrap_decoration which provides NoSignedWrap/NoUnsignedWrap.
|
||||
|
||||
if (info.class != .strange_integer)
|
||||
return result_id;
|
||||
|
||||
return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: strange integer operation mask", .{});
|
||||
}
|
||||
|
||||
fn genUnOp(self: *DeclGen, inst: *Inst.UnOp) !u32 {
|
||||
const operand_id = try self.resolve(inst.operand);
|
||||
|
||||
const result_id = self.spv.allocResultId();
|
||||
const result_type_id = try self.getOrGenType(inst.base.ty);
|
||||
|
||||
const info = try self.arithmeticTypeInfo(inst.operand.ty);
|
||||
|
||||
const opcode = switch (inst.base.tag) {
|
||||
// Bool -> bool
|
||||
.not => Opcode.OpLogicalNot,
|
||||
else => unreachable,
|
||||
};
|
||||
|
||||
try writeInstruction(&self.spv.fn_decls, opcode, &[_]u32{ result_type_id, result_id, operand_id });
|
||||
|
||||
return result_id;
|
||||
}
|
||||
|
||||
fn genArg(self: *DeclGen) u32 {
|
||||
defer self.next_arg_index += 1;
|
||||
return self.args.items[self.next_arg_index];
|
||||
}
|
||||
|
||||
fn genRet(self: *DeclGen, inst: *Inst.UnOp) !?u32 {
|
||||
const operand_id = try self.resolve(inst.operand);
|
||||
// TODO: This instruction needs to be the last in a block. Is that guaranteed?
|
||||
try writeInstruction(&self.spv.fn_decls, .OpReturnValue, &[_]u32{operand_id});
|
||||
return null;
|
||||
}
|
||||
|
||||
fn genRetVoid(self: *DeclGen) !?u32 {
|
||||
// TODO: This instruction needs to be the last in a block. Is that guaranteed?
|
||||
try writeInstruction(&self.spv.fn_decls, .OpReturn, &[_]u32{});
|
||||
return null;
|
||||
}
|
||||
|
||||
fn genUnreach(self: *DeclGen) !?u32 {
|
||||
// TODO: This instruction needs to be the last in a block. Is that guaranteed?
|
||||
try writeInstruction(&self.spv.fn_decls, .OpUnreachable, &[_]u32{});
|
||||
return null;
|
||||
}
|
||||
};
|
||||
|
||||
@ -37,10 +37,9 @@ const spec = @import("../codegen/spirv/spec.zig");
|
||||
|
||||
// TODO: Should this struct be used at all rather than just a hashmap of aux data for every decl?
|
||||
pub const FnData = struct {
|
||||
// We're going to fill these in flushModule, and we're going to fill them unconditionally,
|
||||
// so just set it to undefined.
|
||||
id: u32 = undefined
|
||||
};
|
||||
// We're going to fill these in flushModule, and we're going to fill them unconditionally,
|
||||
// so just set it to undefined.
|
||||
id: u32 = undefined };
|
||||
|
||||
base: link.File,
|
||||
|
||||
@ -130,8 +129,8 @@ pub fn flushModule(self: *SpirV, comp: *Compilation) !void {
|
||||
const module = self.base.options.module.?;
|
||||
const target = comp.getTarget();
|
||||
|
||||
var spirv_module = codegen.SPIRVModule.init(target, self.base.allocator);
|
||||
defer spirv_module.deinit();
|
||||
var spv = codegen.SPIRVModule.init(self.base.allocator);
|
||||
defer spv.deinit();
|
||||
|
||||
// Allocate an ID for every declaration before generating code,
|
||||
// so that we can access them before processing them.
|
||||
@ -143,18 +142,47 @@ pub fn flushModule(self: *SpirV, comp: *Compilation) !void {
|
||||
const decl = entry.key;
|
||||
if (!decl.has_tv) continue;
|
||||
|
||||
decl.fn_link.spirv.id = spirv_module.allocResultId();
|
||||
decl.fn_link.spirv.id = spv.allocResultId();
|
||||
log.debug("Allocating id {} to '{s}'", .{ decl.fn_link.spirv.id, std.mem.spanZ(decl.name) });
|
||||
}
|
||||
}
|
||||
|
||||
// Now, actually generate the code for all declarations.
|
||||
{
|
||||
// We are just going to re-use this same DeclGen for every Decl, and we are just going to
|
||||
// change the decl. Otherwise, we would have to keep a separate `args` and `types`, and re-construct this
|
||||
// structure every time.
|
||||
var decl_gen = codegen.DeclGen{
|
||||
.module = module,
|
||||
.spv = &spv,
|
||||
.args = std.ArrayList(u32).init(self.base.allocator),
|
||||
.next_arg_index = undefined,
|
||||
.types = codegen.TypeMap.init(self.base.allocator),
|
||||
.values = codegen.ValueMap.init(self.base.allocator),
|
||||
.decl = undefined,
|
||||
.error_msg = undefined,
|
||||
};
|
||||
|
||||
defer decl_gen.values.deinit();
|
||||
defer decl_gen.types.deinit();
|
||||
defer decl_gen.args.deinit();
|
||||
|
||||
for (self.decl_table.items()) |entry| {
|
||||
const decl = entry.key;
|
||||
if (!decl.has_tv) continue;
|
||||
|
||||
try spirv_module.gen(decl);
|
||||
decl_gen.args.items.len = 0;
|
||||
decl_gen.next_arg_index = 0;
|
||||
decl_gen.decl = decl;
|
||||
decl_gen.error_msg = null;
|
||||
|
||||
decl_gen.gen() catch |err| switch (err) {
|
||||
error.AnalysisFail => {
|
||||
try module.failed_decls.put(module.gpa, decl, decl_gen.error_msg.?);
|
||||
return;
|
||||
},
|
||||
else => |e| return e,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
@ -165,7 +193,7 @@ pub fn flushModule(self: *SpirV, comp: *Compilation) !void {
|
||||
spec.magic_number,
|
||||
(spec.version.major << 16) | (spec.version.minor << 8),
|
||||
0, // TODO: Register Zig compiler magic number.
|
||||
spirv_module.resultIdBound(), // ID bound.
|
||||
spv.resultIdBound(), // ID bound.
|
||||
0, // Schema (currently reserved for future use in the SPIR-V spec).
|
||||
});
|
||||
|
||||
@ -176,8 +204,8 @@ pub fn flushModule(self: *SpirV, comp: *Compilation) !void {
|
||||
// follows the SPIR-V logical module format!
|
||||
var all_buffers = [_]std.os.iovec_const{
|
||||
wordsToIovConst(binary.items),
|
||||
wordsToIovConst(spirv_module.types_and_globals.items),
|
||||
wordsToIovConst(spirv_module.fn_decls.items),
|
||||
wordsToIovConst(spv.types_globals_constants.items),
|
||||
wordsToIovConst(spv.fn_decls.items),
|
||||
};
|
||||
|
||||
const file = self.base.file.?;
|
||||
|
||||
@ -2341,7 +2341,7 @@ fn transInitListExprArray(
|
||||
assert(@ptrCast(*const clang.Type, arr_type).isConstantArrayType());
|
||||
const const_arr_ty = @ptrCast(*const clang.ConstantArrayType, arr_type);
|
||||
const size_ap_int = const_arr_ty.getSize();
|
||||
const all_count = size_ap_int.getLimitedValue(math.maxInt(usize));
|
||||
const all_count = size_ap_int.getLimitedValue(usize);
|
||||
const leftover_count = all_count - init_count;
|
||||
|
||||
if (all_count == 0) {
|
||||
@ -4266,7 +4266,7 @@ fn transType(c: *Context, scope: *Scope, ty: *const clang.Type, source_loc: clan
|
||||
const const_arr_ty = @ptrCast(*const clang.ConstantArrayType, ty);
|
||||
|
||||
const size_ap_int = const_arr_ty.getSize();
|
||||
const size = size_ap_int.getLimitedValue(math.maxInt(usize));
|
||||
const size = size_ap_int.getLimitedValue(usize);
|
||||
const elem_type = try transType(c, scope, const_arr_ty.getElementType().getTypePtr(), source_loc);
|
||||
|
||||
return Tag.array_type.create(c.arena, .{ .len = size, .elem_type = elem_type });
|
||||
|
||||
@ -367,5 +367,44 @@ pub fn addCases(ctx: *TestContext) !void {
|
||||
,
|
||||
"",
|
||||
);
|
||||
|
||||
case.addCompareOutput(
|
||||
\\pub fn main() void {
|
||||
\\ assert(addMul(3, 4) == 357747496);
|
||||
\\}
|
||||
\\
|
||||
\\fn addMul(a: u32, b: u32) u32 {
|
||||
\\ const x: u32 = blk: {
|
||||
\\ const c = a + b; // 7
|
||||
\\ const d = a + c; // 10
|
||||
\\ const e = d + b; // 14
|
||||
\\ const f = d + e; // 24
|
||||
\\ const g = e + f; // 38
|
||||
\\ const h = f + g; // 62
|
||||
\\ const i = g + h; // 100
|
||||
\\ const j = i + d; // 110
|
||||
\\ const k = i + j; // 210
|
||||
\\ const l = k + c; // 217
|
||||
\\ const m = l * d; // 2170
|
||||
\\ const n = m + e; // 2184
|
||||
\\ const o = n * f; // 52416
|
||||
\\ const p = o + g; // 52454
|
||||
\\ const q = p * h; // 3252148
|
||||
\\ const r = q + i; // 3252248
|
||||
\\ const s = r * j; // 357747280
|
||||
\\ const t = s + k; // 357747490
|
||||
\\ break :blk t;
|
||||
\\ };
|
||||
\\ const y = x + a; // 357747493
|
||||
\\ const z = y + a; // 357747496
|
||||
\\ return z;
|
||||
\\}
|
||||
\\
|
||||
\\fn assert(ok: bool) void {
|
||||
\\ if (!ok) unreachable;
|
||||
\\}
|
||||
,
|
||||
"",
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user